Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants

Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants

Published in:

Microb Biotechnol 11(4) , 667-679 (Jul 2018)

Author(s):

Stolze, Y., Bremges, A., Maus, I., Puhler, A., Sczyrba, A., Schluter, A.

DOI:

10.1111/1751-7915.12982

Abstract:

Biogas production is performed anaerobically by complex microbial communities with key species driving the process. Hence, analyses of their in situ activities are crucial to understand the process. In a previous study, metagenome sequencing and subsequent genome binning for different production-scale biogas plants (BGPs) resulted in four genome bins of special interest, assigned to the phyla Thermotogae, Fusobacteria, Spirochaetes and Cloacimonetes, respectively, that were genetically analysed. In this study, metatranscriptome sequencing of the same BGP samples was conducted, enabling in situ transcriptional activity determination of these genome bins. For this, mapping of metatranscriptome reads on genome bin sequences was performed providing transcripts per million (TPM) values for each gene. This approach revealed an active sugar-based metabolism of the Thermotogae and Spirochaetes bins and an active amino acid-based metabolism of the Fusobacteria and Cloacimonetes bins. The data also hint at syntrophic associations of the four corresponding species with methanogenic Archaea.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California