Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Construction and comparison of three reference-quality genome assemblies for soybean

Construction and comparison of three reference-quality genome assemblies for soybean

Published in:

Plant J (Aug 21 2019)

Author(s):

Valliyodan, B., Cannon, S. B., Bayer, P. E., Shu, S., Brown, A. V., Ren, L., Jenkins, J., Chung, C. Y., Chan, T. F., Daum, C. G., Plott, C., Hastie, A., Baruch, K., Barry, K. W., Huang, W., Patil, G., Varshney, R. K., Hu, H., Batley, J., Yuan, Y., Song, Q., Stupar, R. M., Goodstein, D. M., Stacey, G., Lam, H. M., Jackson, S. A., Schmutz, J., Grimwood, J., Edwards, D., Nguyen, H. T.

DOI:

10.1111/tpj.14500

Abstract:

We report reference-quality genome assemblies and annotations for two accessions of soybean (Glycine max) and one of Glycine soja, the closest wild relative of G. max. The G. max assemblies are for widely used U.S. cultivars: the northern line ‘Williams 82’ (Wm82); and the southern line ‘Lee’. The Wm82 assembly improves the prior published assembly, and the Lee and G. soja assemblies are new for these accessions. Comparisons among the three accessions show generally high structural conservation, but nucleotide difference of 1.7 SNPs/kb between Wm82 and Lee, and 4.7 SNPs/kb between these lines and G. soja. SNP distributions and comparisons with genotypes of the Lee and Wm82 parents highlight patterns of introgressions and haplotype structure. Comparisons against the U.S. germplasm collection shows placement of the sequenced accessions relative to global soybean diversity. Analysis of a pan-gene collection shows generally high conservation, with variation occurring primarily in genomically clustered gene families. We found ~40-42 inversions per chromosome between either Lee or Wm82v4 and G. soja, and ~32 inversions per chromosome between Wm82 and Lee. We also investigated five domestication loci. For each locus, we found two different alleles with functional differences between G. soja and the two domesticated accessions. The genome assemblies for multiple cultivated accessions and for the closest wild ancestor of soybean provides a valuable set of resources for identifying causal variants that underlie traits for soybean’s domestication and improvement, serving as a basis for future research and crop improvement efforts for this important crop species. This article is protected by copyright. All rights reserved.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California