Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties

The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties

Published in:

International Journal of Food Microbiology 157(2) , 202-209 (Jul 2 2012)

Author(s):

Piskur, J., Ling, Z. H., Marcet-Houben, M., Ishchuk, O. P., Aerts, A., LaButti, K., Copeland, A., Lindquist, E., Barry, K., Compagno, C., Bisson, L., Grigoriev, I. V., Gabaldon, T., Phister, T.

DOI:

DOI 10.1016/j.ijfoodmicro.2012.05.008

Abstract:

The yeast Dekkera/Brettanomyces bruxellensis can cause enormous economic losses in wine industry due to production of phenolic off-flavor compounds. D. bruxellensis is a distant relative of baker’s yeast Saccharomyces cerevisiae. Nevertheless, these two yeasts are often found in the same habitats and share several food-related traits, such as production of high ethanol levels and ability to grow without oxygen. In some food products, like Iambic beer, D. bruxellensis can importantly contribute to flavor development. We determined the 13.4 Mb genome sequence of the D. bruxellensis strain Y879 (CBS2499) and deduced the genetic background of several “food-relevant” properties and evolutionary history of this yeast. Surprisingly, we find that this yeast is phylogenetically distant to other food-related yeasts and most related to Pichia (Komagataella) pastoris, which is an aerobic poor ethanol producer. We further show that the D. bruxellensis genome does not contain an excess of lineage specific duplicated genes nor a horizontally transferred URA1 gene, two crucial events that promoted the evolution of the food relevant traits in the S. cerevisiae lineage. However, D. bruxellensis has several independently duplicated ADH and ADH-like genes, which are likely responsible for metabolism of alcohols, including ethanol, and also a range of aromatic compounds. (C) 2012 Elsevier BM. All rights reserved.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California