Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › The Ancient Salicoid Genome Duplication Event: A Platform for Reconstruction of De Novo Gene Evolution in Populus trichocarpa

The Ancient Salicoid Genome Duplication Event: A Platform for Reconstruction of De Novo Gene Evolution in Populus trichocarpa

Published in:

Genome Biology and Evolution 13(9) ( 2021)

Author(s):

Yates, Timothy B, Feng, Kai, Zhang, Jin, Singan, Vasanth, Jawdy, Sara S, Ranjan, Priya, Abraham, Paul E, Barry, Kerrie, Lipzen, Anna, Pan, Chongle, Schmutz, Jeremy, Chen, Jin-Gui, Tuskan, Gerald A, Muchero, Wellington

DOI:

10.1093/gbe/evab198

Abstract:

Orphan genes are characteristic genomic features that have no detectable homology to genes in any other species and represent an important attribute of genome evolution as sources of novel genetic functions. Here, we identified 445 genes specific to Populus trichocarpa. Of these, we performed deeper reconstruction of 13 orphan genes to provide evidence of de novo gene evolution. Populus and its sister genera Salix are particularly well suited for the study of orphan gene evolution because of the Salicoid whole-genome duplication event which resulted in highly syntenic sister chromosomal segments across the Salicaceae. We leveraged this genomic feature to reconstruct de novo gene evolution from intergenera, interspecies, and intragenomic perspectives by comparing the syntenic regions within the P. trichocarpa reference, then P. deltoides, and finally Salix purpurea. Furthermore, we demonstrated that 86.5% of the putative orphan genes had evidence of transcription. Additionally, we also utilized the Populus genome-wide association mapping panel, a collection of 1,084 undomesticated P. trichocarpa genotypes to further determine putative regulatory networks of orphan genes using expression quantitative trait loci (eQTL) mapping. Functional enrichment of these eQTL subnetworks identified common biological themes associated with orphan genes such as response to stress and defense response. We also identify a putative cis-element for a de novo gene and leverage conserved synteny to describe evolution of a putative transcription factor binding site. Overall, 45% of orphan genes were captured in trans-eQTL networks.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California