Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Cytochrome P450-catalyzed biosynthesis of furanoditerpenoids in the bioenergy crop switchgrass (Panicum virgatum L.)

Cytochrome P450-catalyzed biosynthesis of furanoditerpenoids in the bioenergy crop switchgrass (Panicum virgatum L.)

Published in:

Plant Journal ( 2021)

Author(s):

Muchlinski, A., Jia, M., Tiedge, K., Fell, J. S., Pelot, K. A., Chew, L., Davisson, D., Chen, Y., Siegel, J., Lovell, J. T., Zerbe, P.

DOI:

10.1111/tpj.15492

Abstract:

Specialized diterpenoid metabolites are important mediators of plant–environment interactions in monocot crops. To understand metabolite functions in plant environmental adaptation that ultimately can enable crop improvement strategies, a deeper knowledge of the underlying species-specific biosynthetic pathways is required. Here, we report the genomics-enabled discovery of five cytochrome P450 monooxygenases (CYP71Z25–CYP71Z29) that form previously unknown furanoditerpenoids in the monocot bioenergy crop Panicum virgatum (switchgrass). Combinatorial pathway reconstruction showed that CYP71Z25–CYP71Z29 catalyze furan ring addition directly to primary diterpene alcohol intermediates derived from distinct class II diterpene synthase products. Transcriptional co-expression patterns and the presence of select diterpenoids in switchgrass roots support the occurrence of P450-derived furanoditerpenoids in planta. Integrating molecular dynamics, structural analysis and targeted mutagenesis identified active site determinants that contribute to the distinct catalytic specificities underlying the broad substrate promiscuity of CYP71Z25–CYP71Z29 for native and non-native diterpenoids.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California