Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Genomic basis for the unique phenotype of the alkaliphilic purple nonsulfur bacterium Rhodobaca bogoriensis

Genomic basis for the unique phenotype of the alkaliphilic purple nonsulfur bacterium Rhodobaca bogoriensis

Published in:

Extremophiles 27(2) , 19 ( 2023)

Author(s):

Madigan, Michael T., Bender, Kelly S., Sanguedolce, Sophia A., Parenteau, Mary N., Mayer, Marisa H., Kimura, Yukihiro, Wang-Otomo, Zheng-Yu, Sattley, W. Matthew

DOI:

10.1007/s00792-023-01304-4

Abstract:

Although several species of purple sulfur bacteria inhabit soda lakes, Rhodobaca bogoriensis is the first purple nonsulfur bacterium cultured from such highly alkaline environments. Rhodobaca bogoriensis strain LBB1T was isolated from Lake Bogoria, a soda lake in the African Rift Valley. The phenotype of Rhodobaca bogoriensis is unique among purple bacteria; the organism is alkaliphilic but not halophilic, produces carotenoids absent from other purple nonsulfur bacteria, and is unable to grow autotrophically or fix molecular nitrogen. Here we analyze the draft genome sequence of Rhodobaca bogoriensis to gain further insight into the biology of this extremophilic purple bacterium. The strain LBB1T genome consists of 3.91 Mbp with no plasmids. The genome sequence supports the defining characteristics of strain LBB1T, including its (1) production of a light-harvesting 1–reaction center (LH1–RC) complex but lack of a peripheral (LH2) complex, (2) ability to synthesize unusual carotenoids, (3) capacity for both phototrophic (anoxic/light) and chemotrophic (oxic/dark) energy metabolisms, (4) utilization of a wide variety of organic compounds (including acetate in the absence of a glyoxylate cycle), (5) ability to oxidize both sulfide and thiosulfate despite lacking the capacity for autotrophic growth, and (6) absence of a functional nitrogen-fixation system for diazotrophic growth. The assortment of properties in Rhodobaca bogoriensis has no precedent among phototrophic purple bacteria, and the results are discussed in relation to the organism’s soda lake habitat and evolutionary history.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California