Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › ORT: a workflow linking genome-scale metabolic models with reactive transport codes.

ORT: a workflow linking genome-scale metabolic models with reactive transport codes.

Published in:

Bioinformatics 38(3) , 778-784 ( 2021)

Author(s):

Rubinstein, Rebecca L, Borton, Mikayla A, Zhou, Haiyan, Shaffer, Michael, Hoyt, David W, Stegen, James, Henry, Christopher S, Wrighton, Kelly C, Versteeg, Roelof

DOI:

10.1093/bioinformatics/btab753

Abstract:

MOTIVATION: Nutrient and contaminant behavior in the subsurface are governed by multiple coupled hydrobiogeochemical processes which occur across different temporal and spatial scales. Accurate description of macroscopic system behavior requires accounting for the effects of microscopic and especially microbial processes. Microbial processes mediate precipitation and dissolution and change aqueous geochemistry, all of which impacts macroscopic system behavior. As ‘omics data describing microbial processes is increasingly affordable and available, novel methods for using this data quickly and effectively for improved ecosystem models are needed.
RESULTS: We propose a workflow (‘Omics to Reactive Transport-ORT) for utilizing metagenomic and environmental data to describe the effect of microbiological processes in macroscopic reactive transport models. This workflow utilizes and couples two open-source software packages: KBase (a software platform for systems biology) and PFLOTRAN (a reactive transport modeling code). We describe the architecture of ORT and demonstrate an implementation using metagenomic and geochemical data from a river system. Our demonstration uses microbiological drivers of nitrification and denitrification to predict nitrogen cycling patterns which agree with those provided with generalized stoichiometries. While our example uses data from a single measurement, our workflow can be applied to spatiotemporal metagenomic datasets to allow for iterative coupling between KBase and PFLOTRAN.
AVAILABILITY AND IMPLEMENTATION: Interactive models available at https://pflotranmodeling.paf.subsurfaceinsights.com/pflotran-simple-model/. Microbiological data available at NCBI via BioProject ID PRJNA576070. ORT Python code available at https://github.com/subsurfaceinsights/ort-kbase-to-pflotran. KBase narrative available at https://narrative.kbase.us/narrative/71260 or static narrative (no login required) at https://kbase.us/n/71260/258.
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California