Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Metatranscriptomics sheds light on the links between the functional traits of fungal guilds and ecological processes in forest soil ecosystems

Metatranscriptomics sheds light on the links between the functional traits of fungal guilds and ecological processes in forest soil ecosystems

Published in:

New Phytologist ( 2023)

Author(s):

Auer, Lucas, Buée, Marc, Fauchery, Laure, Lombard, Vincent, Barry, Kerry W., Clum, Alicia, Copeland, Alex, Daum, Chris, Foster, Brian, LaButti, Kurt, Singan, Vasanth, Yoshinaga, Yuko, Martineau, Christine, Alfaro, Manuel, Castillo, Federico J., Imbert, J. Bosco, Ramírez, Lucia, Castanera, Raúl, Pisabarro, Antonio G., Finlay, Roger, Lindahl, Björn, Olson, Ake, Séguin, Armand, Kohler, Annegret, Henrissat, Bernard, Grigoriev, Igor V., Martin, Francis M.

DOI:

10.1111/nph.19471

Abstract:

Soil fungi belonging to different functional guilds, such as saprotrophs, pathogens, and mycorrhizal symbionts, play key roles in forest ecosystems. To date, no study has compared the actual gene expression of these guilds in different forest soils. We used metatranscriptomics to study the competition for organic resources by these fungal groups in boreal, temperate, and Mediterranean forest soils. Using a dedicated mRNA annotation pipeline combined with the JGI MycoCosm database, we compared the transcripts of these three fungal guilds, targeting enzymes involved in C- and N mobilization from plant and microbial cell walls. Genes encoding enzymes involved in the degradation of plant cell walls were expressed at a higher level in saprotrophic fungi than in ectomycorrhizal and pathogenic fungi. However, ectomycorrhizal and saprotrophic fungi showed similarly high expression levels of genes encoding enzymes involved in fungal cell wall degradation. Transcripts for N-related transporters were more highly expressed in ectomycorrhizal fungi than in other groups. We showed that ectomycorrhizal and saprotrophic fungi compete for N in soil organic matter, suggesting that their interactions could decelerate C cycling. Metatranscriptomics provides a unique tool to test controversial ecological hypotheses and to better understand the underlying ecological processes involved in soil functioning and carbon stabilization.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California