Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › High Throughput Phosphoglycolate Phosphatase Activity Assay Using Crude Leaf Extract and Recombinant Enzyme to Determine Kinetic Parameters Km and Vmax Using a Microplate Reader

High Throughput Phosphoglycolate Phosphatase Activity Assay Using Crude Leaf Extract and Recombinant Enzyme to Determine Kinetic Parameters Km and Vmax Using a Microplate Reader

Published in:

Methods in Molecular Biology 2792 , 3-17 ( 2024)

Author(s):

Roze, Ludmila V., Johnson, Audrey, Gregory, Luke M., Tejera-Nieves, Mauricio, Walker, Berkley J.

DOI:

10.1007/978-1-0716-3802-6_1

Abstract:

Determining enzyme activities involved in photorespiration, either in a crude plant tissue extract or in a preparation of a recombinant enzyme, is time-consuming, especially when large number of samples need to be processed. This chapter presents a phosphoglycolate phosphatase (PGLP) activity assay that is adapted for use in a 96-well microplate format. The microplate format for the assay requires fewer enzymes and reagents and allows rapid and less expensive measurement of PGLP enzyme activity. The small volume of reaction mix in a 96-well microplate format enables the determination of PGLP enzyme activity for screening many plant samples, multiple enzyme activities using the same protein extract, and/or identifying kinetic parameters for a recombinant enzyme. To assist in preparing assay reagents, we also present an R Shiny buffer preparation app for PGLP and other photorespiratory enzyme activities and a Km and Vmax calculation app.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California