Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Microbial ecology of an Antarctic hypersaline lake: genomic assessment of ecophysiology among dominant haloarchaea

Microbial ecology of an Antarctic hypersaline lake: genomic assessment of ecophysiology among dominant haloarchaea

Published in:

ISME J (Feb 20 2014)

Author(s):

Williams, T. J., Allen, M. A., Demaere, M. Z., Kyrpides, N. C., Tringe, S. G., Woyke, T., Cavicchioli, R.

DOI:

10.1038/ismej.2014.18

Abstract:

Deep Lake in Antarctica is a cold, hypersaline system where four types of haloarchaea representing distinct genera comprise >70% of the lake community: strain tADL approximately 44%, strain DL31 approximately 18%, Halorubrum lacusprofundi approximately 10% and strain DL1 approximately 0.3%. By performing comparative genomics, growth substrate assays, and analyses of distribution by lake depth, size partitioning and lake nutrient composition, we were able to infer important metabolic traits and ecophysiological characteristics of the four Antarctic haloarchaea that contribute to their hierarchical persistence and coexistence in Deep Lake. tADL is characterized by a capacity for motility via flagella (archaella) and gas vesicles, a highly saccharolytic metabolism, a preference for glycerol, and photoheterotrophic growth. In contrast, DL31 has a metabolism specialized in processing proteins and peptides, and appears to prefer an association with particulate organic matter, while lacking the genomic potential for motility. H. lacusprofundi is the least specialized, displaying a genomic potential for the utilization of diverse organic substrates. The least abundant species, DL1, is characterized by a preference for catabolism of amino acids, and is the only one species that lacks genes needed for glycerol degradation. Despite the four haloarchaea being distributed throughout the water column, our analyses describe a range of distinctive features, including preferences for substrates that are indicative of ecological niche partitioning. The individual characteristics could be responsible for shaping the composition of the haloarchaeal community throughout the lake by enabling selection of ecotypes and maintaining sympatric speciation.The ISME Journal advance online publication, 20 February 2014; doi:10.1038/ismej.2014.18.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California