Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › A genome-wide SNP genotyping array reveals patterns of global and repeated species-pair divergence in sticklebacks

A genome-wide SNP genotyping array reveals patterns of global and repeated species-pair divergence in sticklebacks

Published in:

Curr Biol 22(1) , 83-90 (Jan 10 2012)

Author(s):

Jones, F. C., Chan, Y. F., Schmutz, J., Grimwood, J., Brady, S. D., Southwick, A. M., Absher, D. M., Myers, R. M., Reimchen, T. E., Deagle, B. E., Schluter, D., Kingsley, D. M.

DOI:

10.1016/j.cub.2011.11.045

Abstract:

Genes underlying repeated adaptive evolution in natural populations are still largely unknown. Stickleback fish (Gasterosteus aculeatus) have undergone a recent dramatic evolutionary radiation, generating numerous examples of marine-freshwater species pairs and a small number of benthic-limnetic species pairs found within single lakes [1]. We have developed a new genome-wide SNP genotyping array to study patterns of genetic variation in sticklebacks over a wide geographic range, and to scan the genome for regions that contribute to repeated evolution of marine-freshwater or benthic-limnetic species pairs. Surveying 34 global populations with 1,159 informative markers revealed substantial genetic variation, with predominant patterns reflecting demographic history and geographic structure. After correcting for geographic structure and filtering for neutral markers, we detected large repeated shifts in allele frequency at some loci, identifying both known and novel loci likely contributing to marine-freshwater and benthic-limnetic divergence. Several novel loci fall close to genes implicated in epithelial barrier or immune functions, which have likely changed as sticklebacks adapt to contrasting environments. Specific alleles differentiating sympatric benthic-limnetic species pairs are shared in nearby solitary populations, suggesting an allopatric origin for adaptive variants and selection pressures unrelated to sympatry in the initial formation of these classic vertebrate species pairs.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California