Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities

A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities

Published in:

Proc Natl Acad Sci U S A 109(20) , 7665-70 (May 15 2012)

Author(s):

Leung, K., Zahn, H., Leaver, T., Konwar, K. M., Hanson, N. W., Page, A. P., Lo, C. C., Chain, P. S., Hallam, S. J., Hansen, C. L.

DOI:

10.1073/pnas.1106752109

Abstract:

We present a programmable droplet-based microfluidic device that combines the reconfigurable flow-routing capabilities of integrated microvalve technology with the sample compartmentalization and dispersion-free transport that is inherent to droplets. The device allows for the execution of user-defined multistep reaction protocols in 95 individually addressable nanoliter-volume storage chambers by consecutively merging programmable sequences of picoliter-volume droplets containing reagents or cells. This functionality is enabled by “flow-controlled wetting,” a droplet docking and merging mechanism that exploits the physics of droplet flow through a channel to control the precise location of droplet wetting. The device also allows for automated cross-contamination-free recovery of reaction products from individual chambers into standard microfuge tubes for downstream analysis. The combined features of programmability, addressability, and selective recovery provide a general hardware platform that can be reprogrammed for multiple applications. We demonstrate this versatility by implementing multiple single-cell experiment types with this device: bacterial cell sorting and cultivation, taxonomic gene identification, and high-throughput single-cell whole genome amplification and sequencing using common laboratory strains. Finally, we apply the device to genome analysis of single cells and microbial consortia from diverse environmental samples including a marine enrichment culture, deep-sea sediments, and the human oral cavity. The resulting datasets capture genotypic properties of individual cells and illuminate known and potentially unique partnerships between microbial community members.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California