Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › AraR plays a more dominant role than XlnR in plant biomass conversion in Penicillium subrubescens

AraR plays a more dominant role than XlnR in plant biomass conversion in Penicillium subrubescens

Published in:

Current Research in Biotechnology 8 , 100243 ( 2024)

Author(s):

Liu, Dujuan, Xu, Li, Peng, Mao, Lipzen, Anna, Ng, Vivian, Savage, Emily, Zhang, Yu, Grigoriev, Igor V., Garrigues, Sandra, de Vries, Ronald P.

DOI:

10.1016/j.crbiot.2024.100243

Abstract:

Penicillium subrubescens is a promising candidate for industrial applications as its plant cell wall-degrading enzyme production levels and saccharification abilities are similar to that of the well-established industrial species Aspergillus niger. Interestingly, it has an expanded repertoire of hemicellulases, pectinases and inulinases in its genome compared to other Penicillia, that may enable a more targeted degradation of the corresponding polysaccharides. The transcriptional factor XlnR is essential for the expression of xylanolytic genes and is commonly found in genomes of filamentous ascomycete fungi. AraR (a homolog of XlnR) controls the arabinanolytic system as well as L-arabinose catabolism in Eurotiomycetes. In this study, we generated P. subrubescens ΔxlnR, ΔaraR and ΔxlnRΔaraR mutants and analyzed the transcriptional response of these strains to the monosaccharides D-xylose and L-arabinose, and the polysaccharide wheat arabinoxylan to identify the genes and pathways regulated by these TFs in P. subrubescens. Transcriptomic data revealed that AraR plays a more dominant role in plant biomass conversion in P. subrubescens than XlnR.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California