Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Broad genomic sampling reveals a smut pathogenic ancestry of the fungal clade Ustilaginomycotina

Broad genomic sampling reveals a smut pathogenic ancestry of the fungal clade Ustilaginomycotina

Published in:

Mol Biol Evol (May 15 2018)

Author(s):

Kijpornyongpan, T., Mondo, S. J., Barry, K., Sandor, L., Lee, J., Lipzen, A., Pangilinan, J., LaButti, K., Hainaut, M., Henrissat, B., Grigoriev, I. V., Spatafora, J. W., Aime, M. C.

DOI:

10.1093/molbev/msy072

Abstract:

Ustilaginomycotina is home to a broad array of fungi including important plant pathogens collectively called smut fungi. Smuts are biotrophs that produce characteristic perennating propagules called teliospores, one of which, Ustilago maydis, is a model genetic organism. Broad exploration of smut biology has been hampered by limited phylogenetic resolution of Ustilaginiomycotina as well as an overall lack of genomic data for members of this subphylum. In this study, we sequenced eight Ustilaginomycotina genomes from previously unrepresented lineages, deciphered ordinal-level phylogenetic relationships for the subphylum, and performed comparative analyses. Unlike other Basidiomycota subphyla, all sampled Ustilaginomycotina genomes are relatively small and compact. Ancestral state reconstruction analyses indicate that teliospore formation was present at the origin of the subphylum. Divergence time estimation dates the divergence of most extant smut fungi after that of grasses (Poaceae). However, we found limited conservation of well-characterized genes related to smut pathogenesis from U. maydis, indicating dissimilar pathogenic mechanisms exist across other smut lineages. The genomes of Malasseziomycetes are highly diverged from the other sampled Ustilaginomycotina, likely due to their unique history as mammal-associated lipophilic yeasts. Despite the extensive genomic data, the phylogenetic placement of this class remains ambiguous. Although the sampled Ustilaginomycotina members lack many core enzymes for plant cell wall decomposition and starch catabolism, we identified several novel carbohydrate active enzymes potentially related to pectin breakdown. Finally, about 50% of Ustilaginomycotina species-specific genes are present in previously undersampled and rare lineages, highlighting the importance of exploring fungal diversity as a resource for novel gene discovery.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California