Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels

Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels

Published in:

Appl Microbiol Biotechnol 101(6) , 2603-2618 (Mar 2017)

Author(s):

Wu, W., Davis, R. W., Tran-Gyamfi, M. B., Kuo, A., LaButti, K., Mihaltcheva, S., Hundley, H., Chovatia, M., Lindquist, E., Barry, K., Grigoriev, I. V., Henrissat, B., Gladden, J. M.

DOI:

10.1007/s00253-017-8091-1

Abstract:

Recently, several endophytic fungi have been demonstrated to produce volatile organic compounds (VOCs) with properties similar to fossil fuels, called “mycodiesel,” while growing on lignocellulosic plant and agricultural residues. The fact that endophytes are plant symbionts suggests that some may be able to produce lignocellulolytic enzymes, making them capable of both deconstructing lignocellulose and converting it into mycodiesel, two properties that indicate that these strains may be useful consolidated bioprocessing (CBP) hosts for the biofuel production. In this study, four endophytes Hypoxylon sp. CI4A, Hypoxylon sp. EC38, Hypoxylon sp. CO27, and Daldinia eschscholzii EC12 were selected and evaluated for their CBP potential. Analysis of their genomes indicates that these endophytes have a rich reservoir of biomass-deconstructing carbohydrate-active enzymes (CAZys), which includes enzymes active on both polysaccharides and lignin, as well as terpene synthases (TPSs), enzymes that may produce fuel-like molecules, suggesting that they do indeed have CBP potential. GC-MS analyses of their VOCs when grown on four representative lignocellulosic feedstocks revealed that these endophytes produce a wide spectrum of hydrocarbons, the majority of which are monoterpenes and sesquiterpenes, including some known biofuel candidates. Analysis of their cellulase activity when grown under the same conditions revealed that these endophytes actively produce endoglucanases, exoglucanases, and beta-glucosidases. The richness of CAZymes as well as terpene synthases identified in these four endophytic fungi suggests that they are great candidates to pursue for development into platform CBP organisms.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California