Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Continuous molecular evolution of protein-domain structures by single amino acid changes

Continuous molecular evolution of protein-domain structures by single amino acid changes

Published in:

Current Biology 17(2) , 173-178 (Jan 23 2007)

Author(s):

Meier, S., Jensen, P. R., David, C. N., Chapman, J., Holstein, T. W., Grzesiek, S., Ozbek, S.

DOI:

Doi 10.1016/J.Cub.2006.10.063

Abstract:

Protein structures cluster into families of folds that can result from extremely different amino acid sequences [11]. Because the enormous amount of genetic information generates a limited number of protein folds [2], a particular domain structure often assumes numerous functions. How new protein structures and new functions evolve under these limitations remains elusive. Molecular evolution may be driven by the ability of biomacromolecules to adopt multiple conformations as a bridge between different folds [3-6]. This could allow proteins to explore new structures and new tasks while part of the structural ensemble retains the initial conformation and function as a safeguard [7]. Here we show that a global structural switch can arise from single amino acid changes in cysteine-rich domains (CRD) of cnidarian nematocyst proteins. The ability of these CRDs to form two structures with different disulfide patterns from an identical cysteine pattern is distinctive [8]. By applying a structure-based mutagenesis approach, we demonstrate that a cysteine-rich domain can interconvert between two natively occurring domain structures via a bridge state containing both structures. Comparing cnidarian CRD sequences leads us to believe that the mutations we introduced to stabilize each structure reflect the birth of new protein folds in evolution.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California