Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Development of a Recombineering System for the Acetogen Eubacterium limosum with Cas9 Counterselection for Markerless Genome Engineering

Development of a Recombineering System for the Acetogen Eubacterium limosum with Cas9 Counterselection for Markerless Genome Engineering

Published in:

ACS Synthetic Biology 13(8) , 2505-2514 ( 2024)

Author(s):

Sanford, Patrick A., Woolston, Benjamin M.

DOI:

10.1021/acssynbio.4c00253

Abstract:

Eubacterium limosum is a Clostridial acetogen that efficiently utilizes a wide range of single-carbon substrates and contributes to metabolism of health-associated compounds in the human gut microbiota. These traits have led to interest in developing it as a platform for sustainable CO2-based biofuel production to combat carbon emissions, and for exploring the importance of the microbiota in human health. However, synthetic biology and metabolic engineering in E. limosum have been hindered by the inability to rapidly make precise genomic modifications. Here, we screened a diverse library of recombinase proteins to develop a highly efficient oligonucleotide-based recombineering system based on the viral recombinase RecT. Following optimization, the system is capable of catalyzing ssDNA recombination at an efficiency of up to 2%. Addition of a Cas9 counterselection system eliminated unrecombined cells, with up to 100% of viable cells encoding the desired mutation, enabling creation of genomic point mutations in a scarless and markerless manner. We deployed this system to create a clean knockout of the extracellular polymeric substance (EPS) gene cluster, generating a strain incapable of biofilm formation. This approach is rapid and simple, not requiring laborious homology arm cloning, and can readily be retargeted to almost any genomic locus. This work overcomes a major bottleneck in E. limosum genetic engineering by enabling precise genomic modifications, and provides both a roadmap and associated recombinase plasmid library for developing similar systems in other Clostridia of interest.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California