Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Dynamics and activity of an ammonia-oxidizing archaea bloom in South San Francisco Bay

Dynamics and activity of an ammonia-oxidizing archaea bloom in South San Francisco Bay

Published in:

The ISME Journal: Multidisciplinary Journal of Microbial Ecology 18(1) , wrae148 ( 2024)

Author(s):

Rasmussen, Anna N, Francis, Christopher A

DOI:

10.1093/ismejo/wrae148

Abstract:

Transient or recurring blooms of ammonia-oxidizing archaea (AOA) have been reported in several estuarine and coastal environments, including recent observations of AOA blooms in South San Francisco Bay. Here, we measured nitrification rates, quantified AOA abundance, and analyzed both metagenomic and metatranscriptomic data to examine the dynamics and activity of nitrifying microorganisms over the course of an AOA bloom in South San Francisco Bay during the autumn of 2018 and seasonally throughout 2019. Nitrification rates were correlated with AOA abundance in quantitative polymerase chain reaction (PCR) data, and both increased several orders of magnitude between the autumn AOA bloom and spring and summer seasons. From bloom samples, we recovered an extremely abundant, high-quality Candidatus Nitrosomarinus catalina-like AOA metagenome-assembled genome that had high transcript abundance during the bloom and expressed >80% of genes in its genome. We also recovered a putative nitrite-oxidizing bacteria metagenome-assembled genome from within the Nitrospinaceae that was of much lower abundance and had lower transcript abundance than AOA. During the AOA bloom, we observed increased transcript abundance for nitrogen uptake and oxidative stress genes in non-nitrifier metagenome-assembled genomes. This study confirms AOA are not only abundant but also highly active during blooms oxidizing large amounts of ammonia to nitrite-a key intermediate in the microbial nitrogen cycle-and producing reactive compounds that may impact other members of the microbial community.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California