Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Enhancing microRNA167A expression in seed decreases the alpha-linolenic acid content and increases seed size in Camelina sativa

Enhancing microRNA167A expression in seed decreases the alpha-linolenic acid content and increases seed size in Camelina sativa

Published in:

Plant J (Jan 3 2019)

Author(s):

Na, G., Mu, X., Grabowski, P., Schmutz, J., Lu, C.

DOI:

10.1111/tpj.14223

Abstract:

Despite well established roles of microRNAs in plant development, few aspects have been addressed to understand their effects in seeds especially on lipid metabolism. In this study, we showed that overexpressing microRNA167A (miR167OE) in camelina (Camelina sativa) under a seed-specific promoter changed fatty acid composition and increased seed size. Specifically, the miR167OE seeds had a lower alpha-linolenic acid with a concomitantly higher linoleic acid content than the wild-type. This decreased level of fatty acid desaturation corresponded to a decreased transcriptional expression of the camelina fatty acid desaturase3 (CsFAD3) in developing seeds. MiR167 targeted the transcription factor auxin response factor (CsARF8) in camelina, as had been reported previously in Arabidopsis. Chromatin immunoprecipitation experiments combined with transcriptome analysis indicated that CsARF8 bound to promoters of camelina bZIP67 and ABI3 genes. These transcription factors directly or through the ABI3-bZIP12 pathway regulate CsFAD3 expression and affect alpha-linolenic acid accumulation. In addition, to decipher the miR167A-CsARF8 mediated transcriptional cascade for CsFAD3 suppression, transcriptome analysis was conducted to implicate mechanisms that regulate seed size in camelina. Expression levels of many genes were altered in miR167OE, including orthologs that have previously been identified to affect seed size in other plants. Most notably, genes for seed coat development such as suberin and lignin biosynthesis were down-regulated. This study provides valuable insights into the regulatory mechanism of fatty acid metabolism and seed size determination, and suggests possible approaches to improve these important traits in camelina.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California