Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Expression of a mammalian RNA demethylase increases flower number and floral stem branching in Arabidopsis thaliana

Expression of a mammalian RNA demethylase increases flower number and floral stem branching in Arabidopsis thaliana

Published in:

Plant Direct 8(8) ( 2024)

Author(s):

Markel, Kasey, Waldburger, Lucas, Shih, Patrick M.

DOI:

10.1002/pld3.70000

Abstract:

Abstract RNA methylation plays a central regulatory role in plant biology and is a relatively new target for plant improvement efforts. In nearly all cases, perturbation of the RNA methylation machinery results in deleterious phenotypes. However, a recent landmark paper reported that transcriptome‐wide use of the human RNA demethylase FTO substantially increased the yield of rice and potatoes. Here, we have performed the first independent replication of those results and demonstrated broader transferability of the trait, finding increased flower and fruit count in the model species Arabidopsis thaliana . We also performed RNA‐seq of our FTO‐transgenic plants, which we analyzed in conjunction with previously published datasets to detect several previously unrecognized patterns in the functional and structural classification of the upregulated and downregulated genes. From these, we present mechanistic hypotheses to explain these surprising results with the goal of spurring more widespread interest in this promising new approach to plant engineering.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California