Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light

Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light

Published in:

Science 345(6202) , 1312-7 (Sep 12 2014)

Author(s):

Gan, F., Zhang, S., Rockwell, N. C., Martin, S. S., Lagarias, J. C., Bryant, D. A.

DOI:

10.1126/science.1256963

Abstract:

Cyanobacteria are unique among bacteria in performing oxygenic photosynthesis, often together with nitrogen fixation and, thus, are major primary producers in many ecosystems. The cyanobacterium, Leptolyngbya sp. strain JSC-1, exhibits an extensive photoacclimative response to growth in far-red light that includes the synthesis of chlorophylls d and f. During far-red acclimation, transcript levels increase more than twofold for ~900 genes and decrease by more than half for ~2000 genes. Core subunits of photosystem I, photosystem II, and phycobilisomes are replaced by proteins encoded in a 21-gene cluster that includes a knotless red/far-red phytochrome and two response regulators. This acclimative response enhances light harvesting for wavelengths complementary to the growth light (lambda = 700 to 750 nanometers) and enhances oxygen evolution in far-red light.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California