Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis

Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis

Published in:

Mol Biol Evol 25(2) , 393-401 (Feb 2008)

Author(s):

Wickett, N. J., Zhang, Y., Hansen, S. K., Roper, J. M., Kuehl, J. V., Plock, S. A., Wolf, P. G., DePamphilis, C. W., Boore, J. L., Goffinet, B.

DOI:

10.1093/molbev/msm267

Abstract:

Aneura mirabilis is a parasitic liverwort that exploits an existing mycorrhizal association between a basidiomycete and a host tree. This unusual liverwort is the only known parasitic seedless land plant with a completely nonphotosynthetic life history. The complete plastid genome of A. mirabilis was sequenced to examine the effect of its nonphotosynthetic life history on plastid genome content. Using a partial genomic fosmid library approach, the genome was sequenced and shown to be 108,007 bp with a structure typical of green plant plastids. Comparisons were made with the plastid genome of Marchantia polymorpha, the only other liverwort plastid sequence available. All ndh genes are either absent or pseudogenes. Five of 15 psb genes are pseudogenes, as are 2 of 6 psa genes and 2 of 6 pet genes. Pseudogenes of cysA, cysT, ccsA, and ycf3 were also detected. The remaining complement of genes present in M. polymorpha is present in the plastid of A. mirabilis with intact open reading frames. All pseudogenes and gene losses co-occur with losses detected in the plastid of the parasitic angiosperm Epifagus virginiana, though the latter has functional gene losses not found in A. mirabilis. The plastid genome sequence of A. mirabilis represents only the second liverwort, and first mycoheterotroph, to have its plastid genome sequenced. We observed a pattern of genome evolution congruent with functional gene losses in parasitic angiosperms but suggest that its plastid genome represents a genome in the early stages of decay following the relaxation of selection pressures.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California