Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina)

Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina)

Published in:

Nat Biotechnol 26(5) , 553-60 (May 2008)

Author(s):

Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., Chapman, J., Chertkov, O., Coutinho, P. M., Cullen, D., Danchin, E. G., Grigoriev, I. V., Harris, P., Jackson, M., Kubicek, C. P., Han, C. S., Ho, I., Larrondo, L. F., de Leon, A. L., Magnuson, J. K., Merino, S., Misra, M., Nelson, B., Putnam, N., Robbertse, B., Salamov, A. A., Schmoll, M., Terry, A., Thayer, N., Westerholm-Parvinen, A., Schoch, C. L., Yao, J., Barabote, R., Nelson, M. A., Detter, C., Bruce, D., Kuske, C. R., Xie, G., Richardson, P., Rokhsar, D. S., Lucas, S. M., Rubin, E. M., Dunn-Coleman, N., Ward, M., Brettin, T. S.

DOI:

10.1038/nbt1403

Abstract:

Trichoderma reesei is the main industrial source of cellulases and hemicellulases used to depolymerize biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. We assembled 89 scaffolds (sets of ordered and oriented contigs) to generate 34 Mbp of nearly contiguous T. reesei genome sequence comprising 9,129 predicted gene models. Unexpectedly, considering the industrial utility and effectiveness of the carbohydrate-active enzymes of T. reesei, its genome encodes fewer cellulases and hemicellulases than any other sequenced fungus able to hydrolyze plant cell wall polysaccharides. Many T. reesei genes encoding carbohydrate-active enzymes are distributed nonrandomly in clusters that lie between regions of synteny with other Sordariomycetes. Numerous genes encoding biosynthetic pathways for secondary metabolites may promote survival of T. reesei in its competitive soil habitat, but genome analysis provided little mechanistic insight into its extraordinary capacity for protein secretion. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced T. reesei strains for industrial applications such as biofuel production.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California