Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Genomic prediction of switchgrass winter survivorship across diverse lowland populations

Genomic prediction of switchgrass winter survivorship across diverse lowland populations

Published in:

G3: Genes, Genomes, Genetics 13(3) , jkad014 ( 2023)

Author(s):

Tilhou, Neal W, Poudel, Hari P, Lovell, John, Mamidi, Sujan, Schmutz, Jeremy, Daum, Christopher, Zane, Matthew, Yoshinaga, Yuko, Lipzen, Anna, Casler, Michael D

DOI:

10.1093/g3journal/jkad014

Abstract:

In the North-Central United States, lowland ecotype switchgrass can increase yield by up to 50% compared with locally adapted but early flowering cultivars. However, lowland ecotypes are not winter tolerant. The mechanism for winter damage is unknown but previously has been associated with late flowering time. This study investigated heading date (measured for two years) and winter survivorship (measured for three years) in a multi-generation population generated from two winter-hardy lowland individuals and diverse southern lowland populations. Sequencing data (311,776 markers) from 1,306 individuals were used to evaluate genome-wide trait prediction through cross-validation and progeny prediction (n = 52). Genetic variance for heading date and winter survivorship was additive with high narrow-sense heritability (0.64 and 0.71, respectively) and reliability (0.68 and 0.76, respectively). The initial negative correlation between winter survivorship and heading date degraded across generations (F1r = -0.43, pseudo-F2r = -0.28, pseudo-F2 progeny r = -0.15). Within-family predictive ability was moderately high for heading date and winter survivorship (0.53 and 0.52, respectively). A multi-trait model did not improve predictive ability for either trait. Progeny predictive ability was 0.71 for winter survivorship and 0.53 for heading date. These results suggest that lowland ecotype populations can obtain sufficient survival rates in the northern United States with two or three cycles of effective selection. Despite accurate genomic prediction, naturally occurring winter mortality successfully isolated winter tolerant genotypes and appears to be an efficient method to develop high-yielding, cold-tolerant switchgrass cultivars.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California