Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk

Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk

Published in:

Proc Natl Acad Sci U S A 111(47) , E5096-104 (Nov 25 2014)

Author(s):

O'Connor, R. M., Fung, J. M., Sharp, K. H., Benner, J. S., McClung, C., Cushing, S., Lamkin, E. R., Fomenkov, A. I., Henrissat, B., Londer, Y. Y., Scholz, M. B., Posfai, J., Malfatti, S., Tringe, S. G., Woyke, T., Malmstrom, R. R., Coleman-Derr, D., Altamia, M. A., Dedrick, S., Kaluziak, S. T., Haygood, M. G., Distel, D. L.

DOI:

10.1073/pnas.1413110111

Abstract:

Bacteria play many important roles in animal digestive systems, including the provision of enzymes critical to digestion. Typically, complex communities of bacteria reside in the gut lumen in direct contact with the ingested materials they help to digest. Here, we demonstrate a previously undescribed digestive strategy in the wood-eating marine bivalve Bankia setacea, wherein digestive bacteria are housed in a location remote from the gut. These bivalves, commonly known as shipworms, lack a resident microbiota in the gut compartment where wood is digested but harbor endosymbiotic bacteria within specialized cells in their gills. We show that this comparatively simple bacterial community produces wood-degrading enzymes that are selectively translocated from gill to gut. These enzymes, which include just a small subset of the predicted wood-degrading enzymes encoded in the endosymbiont genomes, accumulate in the gut to the near exclusion of other endosymbiont-made proteins. This strategy of remote enzyme production provides the shipworm with a mechanism to capture liberated sugars from wood without competition from an endogenous gut microbiota. Because only those proteins required for wood digestion are translocated to the gut, this newly described system reveals which of many possible enzymes and enzyme combinations are minimally required for wood degradation. Thus, although it has historically had negative impacts on human welfare, the shipworm digestive process now has the potential to have a positive impact on industries that convert wood and other plant biomass to renewable fuels, fine chemicals, food, feeds, textiles, and paper products.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California