Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Niche differentiation of bacteria and fungi in carbon and nitrogen cycling of different habitats in a temperate coniferous forest: A metaproteomic approach

Niche differentiation of bacteria and fungi in carbon and nitrogen cycling of different habitats in a temperate coniferous forest: A metaproteomic approach

Published in:

Soil Biology and Biochemistry 155 ( 2021)

Author(s):

Starke, R., Mondéjar, R. L., Human, Z. R., Navrátilová, D., Štursová, M., Větrovský, T., Olson, H. M., Orton, D. J., Callister, S. J., Lipton, M. S., Howe, A., McCue, L. A., Pennacchio, C., Grigoriev, I., Baldrian, P.

DOI:

10.1016/j.soilbio.2021.108170

Abstract:

Temperate coniferous forests sustain the highest levels of biomass of all terrestrial ecosystems and belong to the major carbon sinks on Earth. However, the community composition and its functional diversity depending on the habitat have yet to be unveiled. Here, we analyzed the proteomes from litter, plant roots, rhizosphere, and bulk soil in a temperate coniferous forest at two time points to improve the understanding of the interplay between bacterial and eukaryotic communities in different habitats. Our metaproteomic approach yielded a total of 139,127 proteins that allowed to differentiate the contribution of microbial taxa to protein expression as well as the general functionality based on KEGG Orthology in each habitat. The pool of expressed carbohydrate-active enzymes (CAZymes) was dominated by fungal proteins. While CAZymes in roots and litter targeted mostly the structural biopolymers of plant origin such as lignin and cellulose, the majority of CAZymes in bulk and rhizosphere soil targeted oligosaccharides, starch, and glycogen. Proteins involved in nitrogen cycling were mainly of bacterial origin. Most nitrogen cycling proteins in litter and roots participated in ammonium assimilation while those performing nitrification were the most abundant in bulk and rhizosphere soil. Together, our results indicated niche differentiation of the microbial involvement in carbon and nitrogen cycling in a temperate coniferous forest topsoil.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California