Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Phosphate Availability Modulates Root Exudate Composition and Rhizosphere Microbial Community in a Teosinte and a Modern Maize Cultivar

Phosphate Availability Modulates Root Exudate Composition and Rhizosphere Microbial Community in a Teosinte and a Modern Maize Cultivar

Published in:

Phytobiomes Journal ( 2021)

Author(s):

Brisson, V., Richardy, J., Kosina, S., Northen, T. R., Vogel, J. P., Gaudin, A.

DOI:

10.1094/pbiomes-06-21-0041-r

Abstract:

Domestication and breeding have impacted interactions between plants and their microbiomes in ways that are only beginning to be understood but may have important implications for recruitment of rhizosphere microorganisms, particularly under stress conditions. We investigated the responses of a modern maize (Zea mays ssp. mays) cultivar and its wild relative, teosinte (Zea mays ssp. parviglumis), to different phosphate availabilities. We appraised responses of the plant-microbial holobiont to phosphate stresses by profiling root exudate metabolomes, and microbial communities in the root endosphere and rhizosphere. We also performed plate assays to quantify phosphate solubilizing microorganisms from the rhizosphere. While root exudate metabolite profiles were distinct between the teosinte and modern maize under high phosphate, both plants shifted exudate compositions in response to phosphate stress toward a common metabolite profile. Root and rhizosphere microbial communities also responded significantly to both plant type and the phosphate availability. A subset of bacterial and fungal taxa were differentially abundant under the different phosphate conditions, with each of the three conditions favoring different taxa. Both teosinte and maize rhizospheres harbored phosphate solubilizing microorganisms under all growth conditions. These results suggest that the root exudation response to phosphate stress was conserved through the domestication of maize from teosinte, shifting exudation levels of specific metabolites. Although microbial communities also shifted, plate-based assays did not detect selective recruitment of phosphate solubilizers in response to phosphate availability.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California