Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › PSimScan: algorithm and utility for fast protein similarity search

PSimScan: algorithm and utility for fast protein similarity search

Published in:

PLoS One 8(3) , e58505 ( 2013)

Author(s):

Kaznadzey, A., Alexandrova, N., Novichkov, V., Kaznadzey, D.

DOI:

10.1371/journal.pone.0058505

Abstract:

In the era of metagenomics and diagnostics sequencing, the importance of protein comparison methods of boosted performance cannot be overstated. Here we present PSimScan (Protein Similarity Scanner), a flexible open source protein similarity search tool which provides a significant gain in speed compared to BLASTP at the price of controlled sensitivity loss. The PSimScan algorithm introduces a number of novel performance optimization methods that can be further used by the community to improve the speed and lower hardware requirements of bioinformatics software. The optimization starts at the lookup table construction, then the initial lookup table-based hits are passed through a pipeline of filtering and aggregation routines of increasing computational complexity. The first step in this pipeline is a novel algorithm that builds and selects ‘similarity zones’ aggregated from neighboring matches on small arrays of adjacent diagonals. PSimScan performs 5 to 100 times faster than the standard NCBI BLASTP, depending on chosen parameters, and runs on commodity hardware. Its sensitivity and selectivity at the slowest settings are comparable to the NCBI BLASTP’s and decrease with the increase of speed, yet stay at the levels reasonable for many tasks. PSimScan is most advantageous when used on large collections of query sequences. Comparing the entire proteome of Streptocuccus pneumoniae (2,042 proteins) to the NCBI’s non-redundant protein database of 16,971,855 records takes 6.5 hours on a moderately powerful PC, while the same task with the NCBI BLASTP takes over 66 hours. We describe innovations in the PSimScan algorithm in considerable detail to encourage bioinformaticians to improve on the tool and to use the innovations in their own software development.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California