Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Quantitative genetic-by-soil microbiome interactions in a perennial grass affect functional traits

Quantitative genetic-by-soil microbiome interactions in a perennial grass affect functional traits

Published in:

Proceedings of the Royal Society B 290(1991) , 20221350 ( 2023)

Author(s):

Khasanova, Albina, Edwards, Joseph, Bonnette, Jason, Singer, Esther, Haque, Taslima, Juenger, Thomas E.

DOI:

10.1098/rspb.2022.1350

Abstract:

Plants interact with diverse microbiomes that can impact plant growth and performance. Recent studies highlight the potential beneficial aspects of plant microbiomes, including the possibility that microbes facilitate the process of local adaptation in their host plants. Microbially mediated local adaptation in plants occurs when local host genotypes have higher fitness than foreign genotypes because of their affiliation with locally beneficial microbes. Here, plant adaptation results from genetic interactions of the host with locally beneficial microbes (e.g. host genotype-by-microbiome interactions). We used a recombinant inbred line (RIL) mapping population derived from upland and lowland ecotypes of the diploid C4 perennial bunch grass Panicum hallii to explore quantitative genetic responses to soil microbiomes focusing on functional root and shoot traits involved in ecotypic divergence. We show that the growth and development of ecotypes and their trait divergence depends on soil microbiomes. Moreover, we find that the genetic architecture is modified by soil microbiomes, revealing important plant genotype-by-microbiome interactions for quantitative traits. We detected a number of quantitative trait loci (QTL) that interact with the soil microbiome. Our results highlight the importance of microbial interactions in ecotypic divergence and trait genetic architecture in C4 perennial grasses.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California