Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Reductive Enzyme Cascades for Valorization of Polyethylene Terephthalate Deconstruction Products

Reductive Enzyme Cascades for Valorization of Polyethylene Terephthalate Deconstruction Products

Published in:

ACS Catalysis 13(7) , 4778-4789 ( 2023)

Author(s):

Gopal, Madan R., Dickey, Roman M., Butler, Neil D., Talley, Michael R., Nakamura, Daniel T., Mohapatra, Ashlesha, Watson, Mary P., Chen, Wilfred, Kunjapur, Aditya M.

DOI:

10.1021/acscatal.2c06219

Abstract:

To better incentivize the collection of plastic wastes, chemical transformations must be developed that add value to plastic deconstruction products. Polyethylene terephthalate (PET) is a common plastic whose deconstruction through chemical or biological means has received much attention. However, a limited number of alternative products have been formed from PET deconstruction, and only a small share could serve as building blocks for alternative materials or therapeutics. Here, we demonstrate the production of useful monoamine and diamine building blocks from known PET deconstruction products. We achieve this by designing one-pot biocatalytic transformations that are informed by the substrate specificity of an ω-transaminase and diverse carboxylic acid reductases (CAR) toward PET deconstruction products. We first establish that an ω-transaminase from Chromobacterium violaceum (cvTA) can efficiently catalyze amine transfer to potential PET-derived aldehydes to form monoamine para-(aminomethyl)­benzoic acid (pAMBA) or diamine para-xylylenediamine (pXYL). We then identified CAR orthologs that could perform the bifunctional reduction of terephthalic acid (TPA) to terephthalaldehyde or the reduction of mono-(2-hydroxyethyl) terephthalic acid (MHET) to its corresponding aldehyde. After characterizing 17 CARs in vitro, we show that the CAR from Segniliparus rotundus (srCAR) had the highest observed activity on TPA. Given these elucidated substrate specificity results, we designed modular enzyme cascades based on coupling srCAR and cvTA in one pot with enzymatic cofactor regeneration. When we supply TPA, we achieve a 69 ± 1% yield of pXYL, which is useful as a building block for polymeric materials. When we instead supply MHET and subsequently perform base-catalyzed ester hydrolysis, we achieve 70 ± 8% yield of pAMBA, which is useful for therapeutic applications and as a pharmaceutical building block. This work expands the breadth of products derived from PET deconstruction and lays the groundwork for eventual valorization of waste PET to higher-value chemicals and materials.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California