Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Salt tolerance of two perennial grass Brachypodium sylvaticum accessions

Salt tolerance of two perennial grass Brachypodium sylvaticum accessions

Published in:

Plant Mol Biol 96(3) , 305-314 (Feb 2018)

Author(s):

Sade, N., Del Mar Rubio Wilhelmi, M., Ke, X., Brotman, Y., Wright, M., Khan, I., De Souza, W., Bassil, E., Tobias, C. M., Thilmony, R., Vogel, J. P., Blumwald, E.

DOI:

10.1007/s11103-017-0696-3

Abstract:

KEY MESSAGE: We studied the salt stress tolerance of two accessions isolated from different areas of the world (Norway and Tunisia) and characterized the mechanism(s) regulating salt stress in Brachypodium sylvaticum Osl1 and Ain1. Perennial grasses are widely grown in different parts of the world as an important feedstock for renewable energy. Their perennial nature that reduces management practices and use of energy and agrochemicals give these biomass crops advantages when dealing with modern agriculture challenges such as soil erosion, increase in salinized marginal lands and the runoff of nutrients. Brachypodium sylvaticum is a perennial grass that was recently suggested as a suitable model for the study of biomass plant production and renewable energy. However, its plasticity to abiotic stress is not yet clear. We studied the salt stress tolerance of two accessions isolated from different areas of the world and characterized the mechanism(s) regulating salt stress in B. sylvaticum Osl1, originated from Oslo, Norway and Ain1, originated from Ain-Durham, Tunisia. Osl1 limited sodium transport from root to shoot, maintaining a better K/Na homeostasis and preventing toxicity damage in the shoot. This was accompanied by higher expression of HKT8 and SOS1 transporters in Osl1 as compared to Ain1. In addition, Osl1 salt tolerance was accompanied by higher abundance of the vacuolar proton pump pyrophosphatase and Na(+)/H(+) antiporters (NHXs) leading to a better vacuolar pH homeostasis, efficient compartmentation of Na(+) in the root vacuoles and salt tolerance. Although preliminary, our results further support previous results highlighting the role of Na(+) transport systems in plant salt tolerance. The identification of salt tolerant and sensitive B. sylvaticum accessions can provide an experimental system for the study of the mechanisms and regulatory networks associated with stress tolerance in perennials grass.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California