Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › SECONDARY WALL ASSOCIATED MYB1 is a positive regulator of secondary cell wall thickening in Brachypodium distachyon and is not found in the Brassicaceae

SECONDARY WALL ASSOCIATED MYB1 is a positive regulator of secondary cell wall thickening in Brachypodium distachyon and is not found in the Brassicaceae

Published in:

Plant J 96(3) , 532-545 (Nov 2018)

Author(s):

Handakumbura, P. P., Brow, K., Whitney, I. P., Zhao, K., Sanguinet, K. A., Lee, S. J., Olins, J., Romero-Gamboa, S. P., Harrington, M. J., Bascom, C. J., MacKinnon, K. J., Veling, M. T., Liu, L., Lee, J. E., Vogel, J. P., O'Malley, R. C., Bezanilla, M., Bartley, L. E., Hazen, S. P.

DOI:

10.1111/tpj.14047

Abstract:

Grass biomass is comprised chiefly of secondary walls that surround fiber and xylem cells. A regulatory network of interacting transcription factors in part regulates cell wall thickening. We identified Brachypodium distachyon SECONDARY WALL ASSOCIATED MYB1 (SWAM1) as a potential regulator of secondary cell wall biosynthesis based on gene expression, phylogeny, and transgenic plant phenotypes. SWAM1 interacts with cellulose and lignin gene promoters with preferential binding to AC-rich sequence motifs commonly found in the promoters of cell wall-related genes. SWAM1 over-expression (SWAM-OE) lines had greater above-ground biomass with only a slight change in flowering time while SWAM1 dominant repressor (SWAM1-DR) plants were severely dwarfed with a striking reduction in lignin of schlerenchyma fibers and stem epidermal cell length. Cellulose, hemicellulose, and lignin genes were significantly down-regulated in SWAM1-DR plants and up-regulated in SWAM1-OE plants. There was no reduction in bioconversion yield in SWAM1-OE lines; however, it was significantly increased for SWAM1-DR samples. Phylogenetic and syntenic analyses strongly suggest that the SWAM1 clade was present in the last common ancestor between eudicots and grasses, but is not in the Brassicaceae. Collectively, these data suggest that SWAM1 is a transcriptional activator of secondary cell wall thickening and biomass accumulation in B. distachyon. This article is protected by copyright. All rights reserved.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California