Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › SoyCSN: Soybean context-specific network analysis and prediction based on tissue-specific transcriptome data

SoyCSN: Soybean context-specific network analysis and prediction based on tissue-specific transcriptome data

Published in:

Plant Direct 3(9) , e00167 (Sep 2019)

Author(s):

Wang, J., Hossain, M. S., Lyu, Z., Schmutz, J., Stacey, G., Xu, D., Joshi, T.

DOI:

10.1002/pld3.167

Abstract:

The Soybean Gene Atlas project provides a comprehensive map for understanding gene expression patterns in major soybean tissues from flower, root, leaf, nodule, seed, and shoot and stem. The RNA-Seq data generated in the project serve as a valuable resource for discovering tissue-specific transcriptome behavior of soybean genes in different tissues. We developed a computational pipeline for Soybean context-specific network (SoyCSN) inference with a suite of prediction tools to analyze, annotate, retrieve, and visualize soybean context-specific networks at both transcriptome and interactome levels. BicMix and Cross-Conditions Cluster Detection algorithms were applied to detect modules based on co-expression relationships across all the tissues. Soybean context-specific interactomes were predicted by combining soybean tissue gene expression and protein-protein interaction data. Functional analyses of these predicted networks provide insights into soybean tissue specificities. For example, under symbiotic, nitrogen-fixing conditions, the constructed soybean leaf network highlights the connection between the photosynthesis function and rhizobium-legume symbiosis. SoyCSN data and all its results are publicly available via an interactive web service within the Soybean Knowledge Base (SoyKB) at http://soykb.org/SoyCSN. SoyCSN provides a useful web-based access for exploring context specificities systematically in gene regulatory mechanisms and gene relationships for soybean researchers and molecular breeders.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California