Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Targeted and shotgun metagenomic approaches provide different descriptions of dryland soil microbial communities in a manipulated field study

Targeted and shotgun metagenomic approaches provide different descriptions of dryland soil microbial communities in a manipulated field study

Published in:

Environ Microbiol Rep 4(2) , 248-56 (Apr 2012)

Author(s):

Steven, B., Gallegos-Graves, L. V., Starkenburg, S. R., Chain, P. S., Kuske, C. R.

DOI:

10.1111/j.1758-2229.2012.00328.x

Abstract:

The extent to which different sequence-based approaches describe environmental microbial communities in comparative studies is an important consideration when deriving inferences from ecological studies. The ability of a targeted metagenomic approach [small subunit (SSU) rRNA pyrosequencing] and shotgun metagenome approaches were compared to identify distinguishing features in dryland soil microbial communities from two different habitats: biological soil crusts (biocrusts) and creosote bush root zones. A parallel comparison was conducted to determine the ability of each approach to detect community differences potentially arising from a more subtle experimental treatment, long-term elevated atmospheric carbon dioxide. As expected, the biocrust datasets were clearly differentiated from root zone datasets using either of the sequencing approaches. However, the composition described by each approach was significantly different. The magnitude of comparative differences due to habitat or elevated CO2 treatment was larger with pyrosequenced SSU datasets or SSU reads recruited from shotgun metagenomes, than from SEED-classified shotgun metagenome reads. Finally, based on prior knowledge of the biocrust communities, the SSU-based datasets more accurately identified the dominant biocrust cyanobacteria sequences compared to the shotgun metagenome datasets.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California