Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › The genome of the obligately intracellular bacterium Ehrlichia canis reveals themes of complex membrane structure and immune evasion strategies

The genome of the obligately intracellular bacterium Ehrlichia canis reveals themes of complex membrane structure and immune evasion strategies

Published in:

Journal of Bacteriology 188(11) , 4015-4023 (Jun 2006)

Author(s):

Mavromatis, K., Doyle, C. K., Lykidis, A., Ivanova, N., Francino, M. P., Chain, P., Shin, M., Malfatti, S., Larimer, F., Copeland, A., Detter, J. C., Land, M., Richardson, P. M., Yu, X. J., Walker, D. H., McBride, J. W., Kyrpides, N. C.

DOI:

Doi 10.1128/Jb.01837-05

Abstract:

Ehrlichia canis, a small obligately intracellular, tick-transmitted, gram-negative, alpha-proteobacterium, is the primary etiologic agent of globally distributed canine monocytic ehrlichiosis. Complete genome sequencing revealed that the E. canis genome consists of a single circular chromosome of 1,315,030 bp predicted to encode 925 proteins, 40 stable RNA species, 17 putative pseudogenes, and a substantial proportion of noncoding sequence (27%). Interesting genome features include a large set of proteins with transmembrane helices and/or signal sequences and a unique serine-threonine bias associated with the potential for 0 glycosylation that was prominent in proteins associated with pathogen-host interactions. Furthermore, two paralogous protein families associated with immune evasion were identified, one of which contains poly(G-C) tracts, suggesting that they may play a role in phase variation and facilitation of persistent infections. Genes associated with pathogen-host interactions were identified, including a small group encoding proteins (n = 12) with tandem repeats and another group encoding proteins with eukaryote-like ankyrin domains (n = 7).

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California