Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › The homothallic mating-type locus of the conifer needle endophyte Phialocephala scopiformis DAOMC 229536 (order Helotiales)

The homothallic mating-type locus of the conifer needle endophyte Phialocephala scopiformis DAOMC 229536 (order Helotiales)

Published in:

Fungal Biol 121(12) , 1011-1024 (Dec 1 2017)

Author(s):

Robicheau, B. M., Bunbury-Blanchette, A. L., LaButti, K., Grigoriev, I. V., Walker, A. K.

DOI:

10.1016/j.funbio.2017.08.007

Abstract:

We describe the complete mating-type (MAT) locus for Phialocephala scopiformis Canadian Collection of Fungal Cultures (DAOMC) 229536 – a basal lineage within Vibrisseaceae. This strain is of interest due to its ability to produce the important antiinsectan rugulosin. We also provide some of the first insights into the genome structure and gene inventory of nonclavicipitalean endophytes. Sequence was obtained through shotgun sequencing of the entire P. scopiformis genome, and the MAT locus was then determined by comparing this genomic sequence to known MAT loci within the Phialocephala fortinii s.l.-Acephala applanata species complex. We also tested the relative levels of sequence conservation for MAT genes within Vibrisseaceae (n = 10), as well as within the Helotiales (n = 27). Our results: (1) show a homothallic gene arrangement for P. scopiformis [MAT1-1-1, MAT1-2-1, and MAT1-1-3 genes are present], (2) increase the genomic survey of homothallism within Vibrisseaceae, (3) confirm that P. scopiformis contains a unique S-adenosyl-l-methionine-dependent methyltransferase (SAM-Mtase) gene proximal to its MAT locus, while also lacking a cytoskeleton assembly control protein (sla2) gene, and (4) indicate that MAT1-1-1 is the more useful molecular marker amongst the MAT genes for phylogenetic reconstructions aimed at tracking evolutionary shifts in reproductive strategy and/or MAT loci gene composition within the Helotiales.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California