Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › The mitochondrial genome of the entomophagous endoparasite Xenos vesparum (Insecta: Strepsiptera)

The mitochondrial genome of the entomophagous endoparasite Xenos vesparum (Insecta: Strepsiptera)

Published in:

Gene 376(2) , 248-59 (Jul 19 2006)

Author(s):

Carapelli, A., Vannini, L., Nardi, F., Boore, J. L., Beani, L., Dallai, R., Frati, F.

DOI:

10.1016/j.gene.2006.04.005

Abstract:

In this study, the nearly complete sequence (14,519 bp) of the mitochondrial DNA (mtDNA) of the entomophagous endoparasite Xenos vesparum (Insecta: Strepsiptera) is described. All protein coding genes (PCGs) are in the arrangement known to be ancestral for insects, but three tRNA genes (trnA, trnS(gcu), and trnL(uag)) have transposed to derived positions and there are three tandem copies of trnH, each of which is potentially functional. All of these rearrangements except for that of trnL(uag) is within the short span between nad3 and nad4 and there are numerous blocks of unassignable sequence in this region, perhaps as remnants of larger scale predisposing rearrangements. X. vesparum mtDNA nucleotide composition is strongly biased toward A and T, as is typical for insect mtDNAs. There is also a significant strand skew in the distribution of these nucleotides, with the J-strand being richer in A than T and in C than G, and the N-strand showing an opposite skew for complementary pairs of nucleotides. The hypothetical secondary structure of the LSU rRNA has also been reconstructed, obtaining a structural model similar to that of other insects.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California