
Abstract
Understanding drought and heat tolerance in plants will be critical for sustained agriculture and 
bioenergy production in a changing global climate. Because of their exceptional ability to thrive in arid, 
hot environments with minimal soil nitrogen, Agave species have been identified as a candidate 
bioenergy feedstock and provide a model for studies of adaptations to drought and heat. While some 
physiological mechanisms underlying these traits have been studied in detail, the molecular basis of 
the extreme heat and drought tolerance in these plants remains unclear. We have constructed de 
novo reference transcriptomes for Agave tequilana, an economically important species cultivated in 
Mexico for spirit distillation, and A. deserti, an extremely thermo- and drought-tolerant species native 
to the Colorado Desert, using 368 and 185 gigabasepairs, respectively, of Illumina short-read 
sequence data. These data sets enable cross-species comparative analysis of protein-coding 
sequences and tissue-specific gene expression levels. Based on these reference transcriptomes, we 
also perform quantitative expression profiling of agaves subjected to heat and drought stress in 
controlled greenhouse experiments, enabling a transcriptome-wide understanding of Agave stress 
responses. Complementary to plant-endogenous mechanisms, Agave plants are associated with 
microbes that may play important roles in mitigating abiotic stress in arid resource-limited 
environments. Using targeted sequence-based microbial community profiling, we study the 
microbiomes of cultivated A. tequilana, and wild A. deserti and A. salmiana. We also use deep 
metagenomic sequencing to gain further insight into Agave rhizosphere and phyllosphere microbe 
communities, and perform isolation and single-cell genome sequencing of individual microbial cells 
residing within Agave tissues. These studies aim to identify microbial species, genes, and pathways 
conferring additional stress resistance to agaves. Taken together, our work builds a robust platform to 
accelerate discovery of plant and plant-associated microbial adaptations to major abiotic stresses. 
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I. Agave can supplement other bioenergy feedstocks
Agave species, adapted to their native habitat in arid regions of Mexico and the United States, hold 
promise as a biofuel feedstock [1], capable of growing on marginal lands where other bioenergy 
plants cannot. The ability of agaves to withstand hot and arid conditions relies upon Crassulacean 
Acid Metabolism (CAM)—a specialized form of photosynthesis allowing agaves to keep leaf stomata 
(pores) closed during the day, minimizing water loss through evapotranspiration.  

II. Agaves are productive with minimal resources
Agaves are capable of producing lignocellulosic biomass with little water and nitrogen inputs. Species  
A. salmiana and A. mapisaga have been reported to produce up to 40 metric tonnes (Mg) of dry 
biomass per hectare per year [2]. 
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De novo assembly of Agave transcriptomes
Without sequence information, molecular studies of agaves are difficult. To address this need, we 
chose A. tequilana, which is currently cultivated for tequila production, and A. deserti, an extremely 
drough and heat tolerant agave, as our reference species. Agaves have large genomes (~4–7 Gb) [5, 
6], so we focused on sequencing the protein-coding transcriptome using Illumina RNA-seq and de 
novo transcriptome assembly with Rnnotator [7], a de novo transcriptome assembly pipeline 
developed at JGI. 
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A. Illumina RNA-seq library production. Distinct tissues of agave were used as 
starting material. mRNA was purified from each tissue, fragmented to either 
250 or 500 nt lengths, reverse transcribed into DNA, and ligated to Illumina 
indexed adaptors (blue). Our procedure preserves information about the 
mRNA source and strand specificity to aid transcriptome assembly.

B. Plot demonstrating sequencing depth, where the x-axis represents a 
number of randomly sampled Illumina reads, and the y-axis represents the 
probability of sequencing a unique 25-mer sequence.  
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A. Agave tequilana cultivated in Mexico.

B. Semi-arid regions of the United States 
(brown) are unsuitable for cultivation of other 
bioenergy plants, which require temperate 
environments (green). Most Agave species are 
adapted to semi-arid regions in Mexico and the 
extreme southwestern USA (purple). 

C.  Crassulacean Acid Metabolism (CAM). CO2 
enters plant cells at night, joins with a 3-carbon 
molecule (C3) and is stored in the vacuole as a 
4-carbon molecule (C4). During the day, C4 
molecules diffuse out of the vacuole, and CO2 is 
relased and assimilated into sugar in the 
chloroplast.

Comparison of inputs (water and 
nitrogen) and outputs (biomass and 
ethanol) of agaves and other biofuel 
feedstock species. Though agaves 
are harvested at several years of age, 
their annualized growth rate is 
comparable to Miscanthus. Table is 
modified from reference [4].
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Expression profiling of agaves
Adding functional data to annotation
With reference transcriptomes in place, expression profiling experiments can be initiated. Using data 
from the transcriptome assemblies, tissue-specific expression profiles can be studied. Additional ex-
periments are in progress to understand transcriptome responses to heat and drought stress. 

Agave microbiomes and adaptations to stress
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Discovering the Agave microbial community
We have initiated sequence-based studies of the A. tequilana, A. salmiana and A. deserti microbi-
omes. Ultimately, we aim to identify microbes conferring stress and disease resistance to agaves. 
With both transcriptome and microbe sequences in hand, we will have a strong foundation for power-
ful plant-microbe interaction studies.
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A. Microscopic examination of 
epiphytic microbes associated 
with the Agave phyllosphere (leaf 
surface). Red–stained plant cell 
walls, blue–epiphytic microbes. 

B. Microbial communities of 
Agave to be examined by 
sequence-based techniques.

C. Fast UniFrac [9] PCoA 
analysis of A. deserti microbe 
communities collected during 
Summer 2011 in Southern 
California. Data demonstrate 
distinct microbial communities 
associated with different parts of 
the plant.  
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A. Heatmap of Photosystem I and II genes expressed in A. deserti roots, folded leaves, and sections along the proximal-distal axis 
of an unfolded leaf. Data indicates photosystem genes are most highly expressed in the distal half of the leaf, while the proximal end, 
lacking chlorophyll pigmentation, has relatively low expression of photosystem genes.

B. Heatmap of KNOX gene expression along the proximal-distal axis of an unfolded leaf. Arrow indicates the ortholog of Zea mays 
Knotted1 (Kn1), expressed higher in proximal leaf sections than distal leaf sections. 

C.  Overview of ongoing expression profiling experiments, testing A. tequilana responses to prolonged drought and heat.

Robust transcriptome assemblies

OrthoMCL Groups common to rice and Arabidopsis: 9117
 - A. tequilana shares 8694 (95.4%)
 - A. deserti shares 8660 (95.0%)

A resource for Agave molecular biology
Transcriptome assemblies were filtered for artifacts and sequences from associated microorganisms. 
The resulting Agave transcriptomes, while not a 100% complete representation of Agave genes, con-
tain a significant number of loci and encode the majority of proteins within other plant species. 

A. Summary of transcriptome 
assemblies for A. tequilana and A. 
deserti.

B. Comparing the A. deserti and A. 
tequilana transcriptomes by BLAT 
alignment. The majority of transcript 
in one species aligns to a transcript 
in the other. 

C. Alignment of 82 A. tequilana 
sequences in GenBank to the A. 
tequilana transcriptome assembly 
by BLAT. 81 of 82 sequences were 
found. 

D. Shared OrthoMCL v5 [8] protein 
clusters between Arabidopsis, rice, 
A. tequilana and A. deserti. 
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