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The	evolution	of	microbial	species	– a	view	through	the	genomic	lens

For a long time prokaryotic species definition has been under
debate and a constant source of turmoil in microbiology. This
has recently prompted the ASM to call for a scalable and
reproducible technique, which uses meaningful commonalities
to cluster microorganisms into groups corresponding to
prokaryotic species. Whole‐genome Average Nucleotide
Identity (gANI) was previously suggested as a measure of
genetic distance that generally agrees with prokaryotic species
assignments based on the accepted best practices (DNA‐DNA
hybridization and 16S rDNA similarity). In this work, we prove
that gANI is indeed the meaningful commonality based on
which microorganisms can be grouped into the
aforementioned clusters. By analyzing 1.76 million pairs of
genomes we find that identification of the closest relatives of
an organism via gANI is precise, scalable, reproducible, and
reflects the evolutionary dynamics of microbes. We model the
previously unexplored statistical properties of gANI using
6,000 microbial genomes and apply species‐specific gANI
cutoffs to reveal anomalies in the current taxonomic species
definitions for almost 50% of the species with multiple genome
sequences. We also provide evidence of speciation events and
genetic continuums in 17.8% of those species. We consider
disagreements between gANI‐based groupings and “named”
species and demonstrate that the former have all the desired
features to serve as the much‐needed “natural groups” for
moving forward with taxonomy. Further, the groupings
identified are presented in detail at http://ani.jgi‐psf.org to
facilitate comprehensive downstream analysis for researchers
across different disciplines

ABSTRACT

OBJECTIVES

Computation	of	AF	and	gANI:
DATA	SOURCES	AND	METHODS

We used the thresholds of gANI>=96.5 and AF>=0.5 to group
the genomes usingMaximal Clique Enumeration (MCE).

RESULTS CONCLUSIONS
Several reports have already illustrated that microbial
taxonomic assignments are inconsistent with emerging genetic,
systematic, and phenotypic information for a large number of
species. According to a recent ASM report, “in moving forward
with microbial taxonomy, it is critical to determine whether
microorganisms cluster in groups with meaningful
commonalities or to determine what commonalities may be best
used to cluster microorganisms into meaningful groups”.

For the first time, gANI was applied across all
available sequenced prokaryotic genomes and its potential
to cluster microorganisms into such “meaningful groups” was
explored. We demonstrate that gANI, which maximally utilizes
the commonalities between microbial genomes, is a robust
measure of genetic relatedness for establishing accurate
evolutionary relationships. The gANI‐based cliques were
validated by comparisons with “named” species, similarity of
16S rDNA, and similarity of conserved core pMGs. They were
then used to address central questions such as whether
microorganisms form a continuum of genetic diversity, or
distinct species represented by distinct genetic signatures.
Thus gANI‐based cliques not only provide insights into the
evolutionary dynamics of prokaryotes, but also significantly
assist in the refinement of the current taxonomy.
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Whole‐genome sequencing (WGS)
launched microbial taxonomy into the
new era of genomic microbial taxonomy,
with the possibility of establishing
systematics on the basis of information
retrieved from complete genomes.
It is plausible to consider that microbial

taxonomy will be steadily more
dependent on genome sequences than
relying on the classic polyphasic
taxonomy, including phenotypic
characterization using time‐consuming
laborious laboratory tests.
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The	fraction	of	genes	between	two	genomes	
that	are	orthologous.

ALIGNMENT	FRACTION	(AF)

reflects	the	degree	of	evolutionary	distance

AVERAGE	NUCLEOTIDE	IDENTITY	(gANI)

Konstantinidis&	Tiedje (2005),	

16s	rRNA DDH

Sequence	level	identity	across	all	the	conserved	genes

In	this	work,	we	propose	whole‐genome	Average	Nucleotide	
Identity	(gANI)	together	with	Alignment	Fraction	(AF)	as	a	

robust	and	reliable	method	for	grouping	of	microbial	genomes	
towards	the	goal	of	species	classification.
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Multiple	homogeneous	species
Such	species	are	considered	to	be	captured	in	the	second	stage	of	speciation	(e.g.	
Bacillus	amyloliquefaciens,	Bacillus	subtilis,	Citrobacter freundii,	Enterococcus	

casseliflavus,Enterococcus faecium,Lactobacillus jensenii)

Single	heterogeneous	
species

The	names/classification	of	these	
species	should	be	reconsidered.	(e.g.	
Escherichia	coli,	Shigella flexneri,	
Shigella boydii,	 Shigella sonnei,	
Burkholderia mallei,	Burkholderia

pseudomallei)

Multiple	heterogeneous	
species

The	names/classification	of	these	
species	should	be	reconsidered	(e.g.	
Bacillus	mycoides,	Salinispora
arenicola,	Rickettsia	rickettsii)

Single	homogeneous	species
These	species	are	concluded	to	be	in	agreement	with	current	taxonomy.	(e.g.	
Lactobacillus	inners,	Glaciecola agarilytica,	Saccharospirillum impatiens)
The	genomes	of	these	species	are	captured	in	the	first	stage	of	speciation.
(e.g.	Lactobacillus	johnsonii ,	Campylobacter	coli,	Enterococcus	faecalis)


