

Meraculous Assembler Manual

Lawrence Berkeley National Lab
Genomics Division
DOE Joint Genome Institute
Walnut Creek, CA

Revision 2.0.4

Contents

1. Before you begin

1.1. Capabilities and limitations
1.2. Operating system requirements
1.3. Hardware considerations
1.4. Internal job execution and control
1.5. Availability and Getting help

2. Installation

2.1. Software dependencies
2.2. Installation procedure
2.3. Test run

3. Running Meraculous

3.1. Workflow steps and stages
3.2. Input data preparation
3.3. Run configuration
3.4. Executing the run
3.5. Working in stages

4. Evaluating output and Troubleshooting

4.1. Key output files
4.2. Logs and error handling
4.3. Run evaluation script
4.4. Troubleshooting tips

5. Citing and feedback

Meraculous is a whole genome assembler for Next Generation Sequencing data geared to eukaryotic
genomes. It is a hybrid k-mer/read-based assembler that capitalizes on the high accuracy of Illumina
sequence by eschewing an explicit error correction step which we argue to be redundant with the
assembly process. Meraculous achieves high performance with large datasets by utilizing lightweight
data structures and multi-threaded parallelization, allowing assembling human-sized genomes on
commodity clusters in under a day. The process pipeline implements a highly transparent and
portable model of job control and monitoring where different assembly stages can be executed and
re-executed separately or in unison on a wide variety of architectures

1. BEFORE YOU BEGIN

1.1 Capabilities and limitations

A few warnings up front

 Currently Meraculous works with Illumina data only. It relies on
Illumina naming conventions and Phred-like sequence quality scores.
Long-read/low-depth sequencing platforms are not supported at this
time.

 An overall mean depth of read coverage of at least 30x is strongly
recommended. Low-coverage datasets will likely result in a highly
fragmented assembly or an aborted process altogether.

 Meraculous deals with genomic diploidy by creating a pseudo-haploid
assembly where haplotypes are "squashed", i.e., a contig is formed with
a single majority allele. However, the higher the polymorphic rate the
less effective this process is. As a result, genomes with polymorphism
rates of over 0.05 are better to assemble as haploid, letting Meraculous
keep both haplotypes as distinct contigs, in essence imitating a meta-
genome.

 Although it is capable of assembling small bacterial genomes, it may not
be the most resource-efficient choice for these scenarios.

 Meraculous relies heavily on distributed and threaded computing and
will perform best on a multiple-core server or in a cluster environment.
For more on this, see sections 'Operating System requirements' and
'Hardware considerations'

Meraculous performs the assembly by first traversing a subgraph of the k-mer (deBruijn) graph of
oligonucleotides with unique high quality extensions and building a set of preliminary contigs (called
UUtigs from here on) where each k-mer is represented only once and no further unique extension is
possible. If running in diploid mode, Meraculous attempts to resolve "bubbles" in the graph caused
by diploidy and merges qualifying UUtigs into "diplotigs". Then the order and orientation of the

UUtigs or diplotigs is determined and gaps between them are closed using information derived from
mapping paired-end reads to the contigs.

While there are numerous factors that can affect the accuracy and performance of this process, the
following are of most importance:

Depth of coverage distribution

Meraculous relies on the coverage profile at several key points in the process. Optimal assembly is
possible only when the depth profile of the genome being assembled can be clearly distinguished
from any low-frequency noise or contamination. The depth distribution is also used to distinglush
haplotypes from repeats (both appear as near-identical copies in a diploid genome), as well as during
the order-and-orientation (oNo) stage.

Library composition

The best assembly can be obtained when a paired-end/mate-pair library is included with mean insert
size well over the size of the largest repeats. Since the repeat composition is often unknown ahead
of time, it is recommended that a balanced mix of several libraries of different insert sizes is used.
Artifacts in such libraries (chimeras, insert-less pairs, untrimmed adapter, etc.) or non-Poisson insert
size distribution can confuse the assembly algorithms and result in highly fragmented assembly.
However, there are options a user can set to mitigate those effects, and it is crucial that those
options are set correctly. See section 'Run configuration' for more details.

Repeat content

Like most assemblers, Meraculous attempts to resolve ambiguities caused by repeats using paired-
end linkage and distance information. Because repeating elements can take complex shapes and/or
can be confounded by variants in diploid genomes, many repeats may remain unresolved as
Meraculous will not make ambiguous joins. Identical repeat copies may "collapse" into what then
looks like a unique contig that "falls out" of the scaffold, thus adding to the total number of scaffolds
and contigs. During gap closure, some of these repeats will be recovered if a repeat-induced gap can
be fully traversed by "k-mer-walking".

Read data quality

Meraculous avoids an explicit error correction step instead relying on k-mer coverage and base
quality scores (e.g. low quality extensions of k-mers are ignored during the graph building stage). K-
mers containing sequencing errors are expected to occur at a much lower frequency than "true" k-
mers and can therefore be eliminated using the depth cutoff. High errors rates in the sequence,

however, can still hinder the assembly and clog up the data structures since a greater number of
unique k-mers would result from sequencing error.

k-mer size

If the chosen k-mer size is too short for the genome then there will be too many non-unique k-mers.
If it's too long then the k-mers will be more likely to include a sequencing error. Both situations
hinder the assembly, so it's important to arrive at a "sweet spot" in the middle.
 Users have an option to have the k-mer size auto-selected based on the provided genome size, but
that is a ballpark approximation. For best results, we advise to start with 3-4 pilot runs with different
k-mer sizes, stopping after the meraculous_mercount stage and reviewing the k-mer frequency
histogram (mercount.png). As a rule of thumb, the largest value of k that yields a distinct peak at
least ~30X is a reasonable choice.

Insert size distribution and library bias

Meraculous uses user-defined estimated average insert size and standard deviation values to set
various cutoffs during the calculation of the actual assembly-based insert size distribution. Therefore,
it's important that these estimates are close to reality.

1.2 Operating system requirements

Meraculous can run on any 64-bit Linux system. This release was developed and tested on Debian
6.0.7 Linux, kernel 2.6.32-5-amd64.

Meraculous can execute distributed/parallel jobs on either a single multi-core system or on a cluster.
In the latter case, the cluster array job submission is executed via a wrapper script cluster_submit.sh.
Depending on your site's cluster configuration, this script may need to be modified by your sysadmin
to ensure proper functionality, or even substituted by your own wrapper. This release was tested
with a Linux cluster running Univa Grid Engine 8.1.4. At the minimum, the current implementation
requires that your cluster scheduler accepts qsub, qstat, and qacct commands for submitting
and monitoring of the jobs.

1.3 Hardware considerations

Disk space and memory requirements depend on many factors, but the following guidelines are a
good estimate.

Disk space

This will differ dramatically depending on the cleanup policy chosen. For details on the different
cleanup options see section ‘Executing the run ’.

Total input sequence
(Gbp)

cleanup_level 0 cleanup_level 1 cleanup_level 2

450 (Human) 6.9 TB 2.9 TB 39 GB

13 (N.sebacea) 67 GB 49 GB 200 MB

1.2 (E.coli) 13 GB 7.6 GB 42 MB

Memory

Where possible, memory usage is optimized by partitioning the input data into blocks that can fit
under smaller memory caps. However, for larger genomes like H.sapiens, the memory-limiting step
is often UUtig generation where all the building blocks must be kept in memory at once.

Genome Size (Gbp) Total sequence earmarked
for contiging (Gbp)

Memory required (GB)

3.1 (H.sapiens) 290 109

0.7 (S.bicolor) 63 18

0.05 (N.fluitans) 10 3.7

0.005 (E.coli) 0.7 0.2

Multi-threading

Many Meraculous components run as threads on multiple cores of a single computer, while others
are single-threaded. To take advantage of multi-threading users must specify how many cores are
available (parameters local_num_procs and cluster_slots_per_task). Keep in mind
that while multi-threading greatly improves run times it has no effect on the memory usage since the
size of the input data chunk is independent of the threading level chosen.

1.4 Internal job execution and control

When following the progress of the run or reviewing the log files, it is important to understand how
the Meraculous components get executed on the system. Meraculous makes heavy use of
distributed task arrays for parallel execution. First, the data is sub-divided into chunks of smaller size.
Then a "command set" containing all the chunks is submitted for execution either locally or on the
cluster as task arrays. Meraculous waits for the local system or the cluster scheduler software to
signal that all the parallel tasks have been completed successfully before continuing. In the event of
failure, users can opt to automatically retry the failed tasks. If there are still failed tasks the program
terminates. After examining the error logs and making corrections to the data or the settings, user
can resume the assembly from the point where it was terminated (see section ‘ Working in Stages ’).
While this will re-form the command set from scratch, only those tasks that haven't successfully
completed will actually get re-executed.

 1.5 Availability and getting help

Meraculous source code along with a small test dataset is available from
http://sourceforge.net/projects/meraculous20.

Questions can be addressed to Eugene Goltsman at egoltsman@lbl.gov
If you’re running into problems with installation, please include the capture of the screen output of
install.sh. If there are errors during Meraculous execution that you don’t understand, please send
your config file and the log/debug.log file from your run.

2. INSTALLATION

2.1 Software dependencies

At the time of the installation the following software should be available on your system:

cmake >= 2.8

http://sourceforge.net/projects/meraculous20
mailto:egoltsman@lbl.gov

GCC g++ >= 4.4.7

GNU make 3.81

Boost C++ library >= 1.50.0

Perl (>= 5.10)

Log4perl.pm (>= 1.31)

gnuplot (>= 3.7)

qqacct (optional but highly recommended for Grid Engine cluster environments:
http://portal.nersc.gov/dna/plant/assembly/meraculous2/extras/qqacct)

2.2 Installation procedure

After you have downloaded and unpacked the source distribution, build and install the software:

 install.sh <installation directory>

..or build it step by step:

 mkdir build

 cd build

 cmake -DCMAKE_INSTALL_PREFIX=<installation directory> ..

 (The installation directory should be different from the build directory)

 [Note Omitting the -DCMAKE_INSTALL_PREFIX option will install the package into system default locations
(/usr/local/bin, etc..)]

 make

 make install

Note: If you're planning to run Meraculous in a cluster environment, additional
configuration may be required. This documentation assumes that an SGE-like

http://search.cpan.org/~mschilli/Log-Log4perl-1.44/lib/Log/Log4perl.pm
http://portal.nersc.gov/dna/plant/assembly/meraculous2/extras/qqacct

cluster system is in place and can, at the minimum, accept commands qstat,
qsub, and qacct, and has the $SGE_ROOT
variable set to the root directory of the cluster control software. To test if this is
the case, type "qstat" on the command line. There should be no errors (the
result may be blank, that is ok). Note, however, that even with SGE-like
systems, additional changes to the cluster_submit.sh wrapper may be
needed on the part of the user, which is outside of the scope of this document.

2.3 Test run

The distribution archive contains a small validation dataset to help you confirm that the software has
been installed properly. The dataset is meant to be kept its original location, and the validation run
should be executed directly from that location. To perform the run, do the following:

 cd <install_dir>/etc/meraculous/test/pipeline

 bash <install_dir>/bin/run_meraculous.sh -c meraculous.config

The run should take no more than 5-10 minutes. When the run completes you will see a new run
directory named run_[date]_[time]. Inside that directory, open the file log/debug.log, it should end
with the following:

 meraculous.pl main:: 840> ran to completion successfully

If you don't see this then something went wrong. The debug.log file will have the most detailed
record of everything that happened during the run, and it is the first file you should examine when
troubleshooting. See section ' Troubleshooting tips ' for more details.

3. RUNNING MERACULOUS

3.1 Workflow steps and stages

The Meraculous pipeline is executed in stages which can be run and re-run individually or all at once.
Each stage is followed by a cleanup of intermediate files. The level of agressiveness of this cleanup is
controlled by the -cleanup_level command line option (for more on this see section ' Executing the
run '). Before starting your first assembly, we strongly recommend to familiarize yourself with what
happens during each stage, what the key outputs are, and how to monitor the process, which means
reading on beyond this chapter, to the end of the document.

meraculous_import

 Creates links to the original input sequence files and names these links in a standard format.

 Validates the format and the pairing schema (dual-file or interleaved) of the input sequence files
and auto-detects the quality encoding offset (Phred+33 or Phred+64). For more on the types of
input data supported, see section ‘Input Data Preparation’.

 Divides the input into chunks to allow for parallel processing in the future. This takes two forms.
One is at the read level, and for that we simply split the sequence files into chunks of ~500 mb of
total sequence. (Note that it is these chunks that will be used from here on and *not* the
original files you provided in the config file.) The second type is at the k-mer level. Here we use a
sampling of the reads to estimate k-mer frequency rates in the dataset, and based on that define
prefix blocks to group k-mers in a load-balanced fashion. Because processing the total k-mer
space of the dataset is memory-intensive, this load balancing is needed to ensure that the data
structures for storing the k-mers require similar amounts of memory. The number of blocks is set
by the user in the config file (for more on this see section ‘Input Data Preparation’).

 Generates a human-readable summary of the input dataset extrapolated from a sub-sampling of
the reads.

meraculous_mercount

 Counts k-mer frequencies across all libraries that are earmarked for contig generation in the
config file, producing a set of .mercount files.

 Builds the k-mer frequency histogram which is used to determine the mininum depth cutoff.
Users should review this histogram (mercount.png) as it can be helpful in identifying features and
abnormalities in the dataset, such as contamination or low quality data.

meraculous_mergraph

 For each k-mer that satisfies the minimum depth cutoff Meraculous counts all possible single
nucleotide extensions of that k-mer (subject to minimum depth and minimum quality cutoffs)
and records them in .mergraph files which now provide the basis for the initial contig assembly.

meraculous_ufx

 Classifies each k-mer in the graph as either unique (U), fork (F), or terminal (X), based on the

possible single-base extensions of the k-mer in either direction. The main output is a .UFX file.

meraculous_contigs

 Loads the UFX information into memory-efficient data structures and builds the initial set of
contigs known as UUtigs. A UUtig is built from a tiling path of 'U' mers overlapping by k-1 bp, and
terminates on either end with either an 'F' mer or an 'X' mer.

 Generates various statistics for the user to review (UUtigs.fa.stats). These can be useful
to detect problems in contig formation. For example, a lack of long contigs and/or contig sizes
failing to add up to the expected genome size may indicate insufficient depth of usable k-mers. If
this coincides with a bi-modal k-mer depth distribution (see stage meraculous_mercount), then
this suggests contamination in the dataset.

[Note: In a diploid genome, the total length of all contigs at this stage should be larger than the
expected genome size because haplotype variants have not been merged or filtered out yet]

meraculous_bubble

 Builds depth and size statistics for the UUtigs, which will later be used in selecting contigs for
scaffolding.

 For diploid assemblies, interrogates ends of UUtigs to detect bubbles in the graph caused by
diploidy and then merges qualifying UUtigs into a new type of contigs called "bubbletigs".
Internally, these bubbletigs are further categorized as either "diplotigs" or "isotigs". Diplotigs are
bubbletigs that represent a single (potentially mosaic) path through both haplotypes, while
isotigs are those that represent a path through only a single haplotype. Regions of polymorphism
where bubbles couldn't be resolved will manifest themselves as isotigs with roughly half the
depth of the rest of the bubbletigs, and based on this will be subject to filtering later on.

Important !!!

Once this stage has completed, we recommend pausing and reviewing the status of the current
assembly. Examine the files mercount.png, kha.png, UUtigs.fa, and confirm that the
results make sense (see section ‘Key output files’ on how to interpret these). Based on what you see
you may wish to adjust your parameters or even rerun some stages before continuing. For example,
seeing an unusually high number of contigs in UUtigs.fa and a large low-depth peak in
mercount.png may mean that your min_depth_cutoff parameter should be raised and everything
restarted from meraculous_mergraph.

For diploid assemblies, you should examine the file bubbletigs.depth.hist and verify that
there are two distinct peaks in the distribution, one at roughly half depth of the other. These are the

full depth contigs and the half-depth “isotigs” that still contain polymorphisms. At this point you may
need to adjust your bubble_min_depth_cutoff parameter to a value that corresponds to the local
minimum between the two peaks. If you had originally set it to 0 Meraculous will auto-detected this
threshold. If you can't clearly identify the two peaks (e.g. low polymorphism), you will be better
off keeping all the contigs, i.e. setting bubble_min_depth_cutoff to 1.

meraculous_merblast

 Generates depth- and size-filtered contigs to be used from here on. For diploid assemblies, half-
depth isotigs are filtered out based on the bubble_min_depth_cutoff value (these sequences will
be recovered later, during gap closure).

 Maps reads from libraries earmarked for scaffolding (i.e. having the lib_seq parameter’s
scaffRound setting set to non-zero) to the contigs, creating blastMap*.merged files

meraculous_ono

 Uses read mappings to "splint" gaps, i.e., link two or more contigs into a scaffold if a single read
aligns to the contigs' respective 5' and 3' ends.

[Note: Only libraries earmarked for gap closure by the user are used in splinting. To minimize
the effect of chimeras and other library prep artifacts, we strongly recommend to use only short
insert paired-end Illumina libraries for this purpose.]

 For each library earmarked for oNo, determines the actual insert-size distribution based on read
pairs mapping to the same contig. This estimate is then used to determine whether a given pair
can be informative in linking contigs. Using this information, for each *set* of libraries (as
defined by the user with the lib_seq parameter’s scaffRound setting), linkage between contigs
is established and scaffolds are built. This process is then iterated for the next ono set,
bootstrapping from the scaffolds from the previous round.

[Note: Meraculous builds the scaffolds using a *range* of cutoffs for the minimum number of
linking pairs (currently from 3 to 10). At the end of each round the set of scaffolds with the
highest N50 is chosen to be used downstream.]

meraculous_gap_closure

 Based on read pairs mapping to neighboring contigs in a scaffold, a gap size model is generated.
Then the scaffold and the gap size information is used to locate the reads suitable for "walking"
across the gaps. The actual sequence is drawn from the original fastq files in the form of k-mers.
Meraculous closes the gaps only if enough consistent and high quality sequence exists to bridge it
entirely. Currently, no partial extensions of contigs into the gaps are made.

[Note: when running in diploid mode, if a gap represents a polymorphic region that was removed
at the beginning of this stage (i.e. a half-depth isotig), Meraculous will attempt to walk across it
using reads from the most common haplotype]

 The final Fasta sequence files are built from the scaffolds and the gap closing info, and any
scaffolds under 1kb are filtered out. This constitutes the final assembly result.

meraculous_final_results

 Generates a brief summary report on the final assembly. For a more in-depth report users should
run the standalone script evaluate_meraculous_run.sh

 3.2 Input data preparation

Meraculous supports the following types in input data:

 Illumina-style sequence in fastq format is the only fully supported input data type at this
moment. Using Perl regular expression notation, the supported fastq header formats are:

Illumina versions pre-1.8:

/^@\S+\:\d+\:\d+\:\d+\:\d+\#?[ACTGN0]*)/[12]\s*\S*$/

Example: @071112_SLXA-EAS1_s_4:1:1:672:654/1

Illumina versions 1.8 and higher:

/^@\S+\:\d+\:\d+\:\d+\:\d+\s+[12]\:[YN]\:\d+\:[ACTGN0]*$/

Example: @HISEQ03:379:C2WP8ACXX:7:1101:1465:2056 2:N:0:ACTTGA

 For paired libraries, read pairs can be either interleaved within a single file or be split into
separate files, e.g. SRA000271.fastq.1 & SRA000271.fastq.2. In the latter case, the reads
must be in the same order in both files and in one-to-one correspondence. [Note: If your
input has been filtered in such a way that some reads have their pairs missing, you will
need to edit the files and add dummy reads to take place of the missing pairs]

 All sequence files belonging to a single library should be definable by a single wildcard
expression, e.g. SRA0*fastq* (two wildcards are required if reads 1 and 2 are in separate
files, e.g. “SRA*fastq1,SRA*fastq2”) For more on specifying the inputs see section 'Run
configuration'.

 Both Phred+33 and Phred+64 quality encoding schemas are supported. You can have a mix of
libraries encoded with either schema, but each individual library must be of one common
encoding scheme throughout.

 Both uncompressed and compressed (gzip) fastq files are supported.

 All reads should be at least k-mer size + 1 in length. The upper limit is currently 500 bp

 All reads should be free of adapter or barcode sequence as Meraculous does no explicit
trimming or error-correction of the sequence. [Note: since low quality data is "naturally"
filtered out by Meraculous based on k-mer depth, low complexity sequence, if present in
large amounts, will tend to escape this filter]

 Meraculous is optimized for assembly of haploid and diploid genomes only. Running on
polyploid or metagenomic datasets and interpreting results can be non-trivial.

3.3 Run configuration

The configuration file contains the parameters guiding the entire assembly process and must be
passed to the program with the -c <file> argument.

The format of the configuration file is parameter followed by one or more values. Spaces or tabs can
be used as field separators.

 [Note: an additional optional configuration file named .meraculous.conf can be placed in your user
home directory and contain default parameters that are not likely to change for your assembly jobs,
e.g. cluster_queue, cluster_slots_per_task, etc. If there is any redundancy in the parameters in the
two files, the run-specific config file takes precedence.]

Basic assembly parameters:
The values of these parameters should be set once, at the onset of the run. It's not advisable to
change them at subsequent resume/restart attempts.

lib_seq A multi-argument parameter defining various properties of the input datasets.

Normally, for every sequencing library, a separate lib_seq parameter line should
be given. The following are the mandatory arguments that must be given as
values-only on a single line, in the exact order they’re listed here, separated by
one or more spaces or tabs. None can be omitted.

[wildcard] - a bash-style expression (typically a full path) defining the
sequence files for a single library. If fwd and rev read pairs are in
separate files, then two wildcards should be provided, separated by a comma,
without spaces. (See section 'Input data preparation' for more on input data
requirements.)

[name] - name of the library
(caps, numbers)

[insertAvg] - estimated average insert size in bp

[insertSdev] - estimated std deviation of insert size in bp

[avgReadLn] - estimated average read length in bp

[hasInnieArtifact] - Whether or not a significant fraction of read pairs is in non-
dominant orientation, e.g. "innies" in an "outie" library or vice versa.
(0=false, 1=true)

[isRevComped] - Whether or not the read pairs are in the "outie" orientation,
i.e <-- -->.
(0=false, 1=true)

[useForContiging]- Whether or not to use this libray for initial contig
generation. Our recommendation is to use only paired-end libraries for this
purpose.
(0=false, 1=true)

 [scaffRound] - Assigns the library to a scaffolding round. Libraries of the
same type and similar insert size should be grouped into the same round for the
sake of performance. To completely exclude a library from being used in
scaffolding, set this to 0.
(positive integers, can be non-consecutive)

[useForGapClosing] - Whether or not to use this library for gap closing. It’s best
to use the same libraries that were used for contig generation for this purpose.
(0=false, 1=true)

[5p_wiggleRoom] - During linkage analysis and gap closure, allow reads from
this library to have an unaligned 5' end up to this many bp. This option is for
cases when a library is known to contain untrimmed adapter sequence.
(positive integer, 0 for default behavior)

[3p_wiggleRoom] - During linkage analysis and gap closure, allow reads from
this library to have an unaligned 3' end up to this many bp. This option can be
used when the library is of poor sequence quality at the 3' end. Beware that
allowing reads to map with large unaligned segments can potentially lead to
erroneus linkage and other problems in the assembly. Use at your own risk!
(positive integer, 0 for default behavior)

Example 1: two sets of files - one with fwd reads and the other with reverse
reads

lib_seq /path/fastq*.0,/path/fastq*.1 ECO1 200 20 36 0 0 1 1 1 0 0

Example 2: one set of files, all with fwd/rev reads interleaved and up to 20 bp
of 5' adapter present

lib_seq /path/to/fastq ECO2 200 20 100 0 0 0 1 0 20 0

genome_size Approximate genome size in Gb. Used in estimating depth of read coverage.
(positive integer or float)

mer_size The k-mer size to use in meraculous. Must be an odd integer less than the size
of the smallest read in the dataset. The optimal k-mer size depends on the
quality of the sequence data and on the genome's repeat content. Picking a k-
mer size that's too small means a given sequence will have a lower likelihood of
being unique. Too large, and you're increasing the likelihood that the sequence
will contain an error, which will cause it to be thrown out entirely by the low-
depth filter. To have Meraculous auto-select one based on genome_size, set
this parameter to 0

There are a number of 3rd party tools available that help you pick the best k-mer
size (e.g. kmergenie), but the following are ballpark guidelines for genomes of

http://kmergenie.bx.psu.edu/

various sizes, assuming good sequence quality:

 Eschirichia coli: 31
 Pichia stipitis: 41
 Arabidopsis halleri: 51
 Homo sapiens: 61

is_diploid Specifies whether to attempt to identify and merge haplotype variants
(0=false, 1=true)

num_prefix_blocks Memory usage is optimized by breaking down the DNA search space by
prefix, partitioning the k-mers into load-balanced blocks so that each can be
processed separately and require similar amount of resources. The greater this
number, the less RAM per process. The downside is that greater and greater
fraction of run-time will be due to fixed costs like I/O of reading the input,
scheduling, etc., so you get less efficiency. Note that only those libraries that
will be used in UUtig generation (and therefore turned into k-mer structures)
should be considered here.

Note: Memory footprint is roughly proportional to the size of the input dataset,
i.e., the total sequence used for contiging, but will vary with sequence quality,
genome size, and repeat content. The following examples can be used as
guidelines for estimating the desired number of blocks:

of blocks Peak memory during k-mer counting (GB)*

 H.sapiens
(290 Gbp)

S.bicolor -
highX (63
Gbp)

S.bicolor-
lowX (14
Gbp)

N.fluitans (10
Gbp)

1 276 139 23 8

4 133 42 7 3

16 24 9 2 0.6

32 12 4 1 0.3

 * Unlike with k-mer counting, the UUtig assembly stage cannot be partitioned this way
and thus has fixed memory requirements which can be the limiting factor for large
genomes. For more, see section ‘Hardware considerations’

Optional assembly parameters

min_depth_cutoff K-mers less frequent than this cutoff will get excluded from assembly

early on. To help determine the right cutoff, start by running with this
set to 0, then, after the stage meraculous_mercount has completed,
look at the k-mer frequency histogram file (mercount.png) and look for
a high count (y), low frequency (x) peak that's distinct from the main

frequency distribution. That peak likely represents erroneous sequence
which is best to keep out of the assembly. With the setting left at 0, the
program will attempt to auto-detect the best cutoff.
(default: auto-detect)

bubble_min_depth_cutoff Valid only when ‘is_diploid’ is on.
After bubble resolution, some fraction of contigs still represents
near-identical haplotype copies which couldn't be merged together. In
the contig depth distribution at that stage, these contigs (termed
isotigs) form a second peak at 1/2 the depth of the main contig set.
This cutoff sets the depth threshold to filter these half-depth isotigs
out. Meraculous will later attempt to recover them during gap-closure.
To keep all haplotypes, set it to 1.
To auto-detect, set it to 0
(default: auto-detect)

min_mercount_to_report Lowest k-mer count to report: counts below this threshold will not be
output by the mercounter and won't participate in any further steps.
(default = 2)

no_read_validation Set to 1 to skip validation of input fastq reads' headers, sequence, and
q-scores. This will speed up the processing of reads in stage
meraculous_import. We recommend using this option only when re-
running with a previously validated dataset.
(0=false, 1=true)

fallback_on_est_insert_size If the program can't determine the actual assembly-based insert size
average for a library, this option will allow it to continue using the initial
estimates provided by user (see lib_seq).
(0=false, 1=true)

gap_close_aggressive Close gaps more aggressively, accepting closures that might violate the
estimated gap size.
(0=false, 1=true)

gap_close_rpt_depth_ratio If the average k-mer depth of a given scaffold exceeds the overall modal
peak depth for all scaffolds by more than this factor the scaffold is
assumed to be a collapsed repeat and is excluded from consideration
during meraculous_gap_closure. Raise this cutoff if you know the
depth distribution in your dataset to be highly irregular, e.g. it's a
metagenome or the like.
(default = 2.0)

Optional resource utilization parameters

local_num_procs Valid only when ‘use_cluster’ is off.

Number of processors to occupy simultaneously when running
jobs locally. This should normally equal the number of available
cpus. For non-threaded processes this sets the maximum number
of processes executed in parallel. For threaded processes this
sets the number of threads.
(default = 1)

num_procs_<stage> Can be used to override ‘local_num_procs’ on a per-stage basis

local_max_memory Set a memory limit (GB) for local processes. Any process that
exceeds this limit will be terminated.

local_max_retries Number of retries before failure for local jobs

use_cluster Specifies whether to use a cluster for job submissions. Requires
an SGE-like cluster system to be configured and ready to accept
scheduling and monitoring commands like qsub, qacct, and qstat.

cluster_slots_per_task Number of slots to allocate to each cluster task. Threaded tasks
will spun this many threads each when run on the cluster. For
non-threaded tasks this option is ignored. Typically, you would
set this to the number of cpus on the smallest available node. If
the nodes are shared and are heavily used, you may want to
refrain from occupying all the CPUs on them.

cluster_ram_request Amount of memory (GB) to request per task on the cluster
If you request too much your process will have few available
nodes to use, too little and your process will get killed by the
cluster scheduler if it exceeds this limit.

cluster_ram_<stage> Can be used to override the above cluster_ram_request on a per-
stage basis.

cluster_walltime Walltime limit for cluster tasks. Must be specified as hh:mm:ss

cluster_walltime_<stage> Can be used to override the above cluster_walltime limit on a per-
stage basis

cluster_max_retries Number of retries before failure for cluster jobs

cluster_project Name of project to which cluster jobs will be assigned.
(This is needed only when your cluster uses project-based
allocation schema)

cluster_queue Name of queue to which cluster jobs will be assigned.

3.4 Executing the run

An assembly run that includes all stages, with intermediate data cleaned up at the end, is executed as
follows:

run_meraculous.sh -c <config file>

This will generate a run directory named run_<date>_<time>. Inside the run directory, files
log/info.log, log/error.log, and log/debug.log contain the detailed record of the
assembly process. One way to monitor a running assembly is to watch the info.log or debug.log
files "live" with 'tail -f'. See section ‘Logs’ for more on these files.

Other command line options:

-dir <>

-label <>
For new assembly runs, -dir lets you name your output run folder,
while –label will attach the specified string as a prefix to the default
name.
For resuming or restarting an existing run, you're required to provide
the run folder with the -dir option.

-archive When restarting a stage from the beginning, save any existing stage
directories under the subdirectory old/

-debug Record all commands and additional troubleshooting information in the
file logs/debug.log (Currently on by default)

-cleanup_level

<0|1|2>
Determines how aggressively the pipeline should clean up intermediate
data after each stage. The possible arguments are:

0 - Do not delete any intermediate outputs. This will provide the
ability to go back and examine full stage outputs or restart from any
stage at any point in the future. The flip side is that with this option, the

disk space footprint may be several times the size of the input dataset.

1 (default) - Delete files that are not used in any of the subsequent
stages and that are generally not informative to the user. You will still be
able to rerun any stage individually.

2 - Delete as much as possible, as soon as possible. With this option
you will not be able to rerun the stages individually once they have
completed. The use of this option should be reserved to cases where
disk space is tight and when you're confident that parts of the assembly
will not need to be rerun.

-restart Restart a previously failed run from the last successful stage

-resume Similar to -restart, but but preserves any partial results from successfully
completed processes within the stage

-step Execute one stage and stop

-start <stage> Re-run starting with this stage (requires –resume or –restart)

-stop <stage> Stop after this stage

Invalid combinations:

-restart with -resume
-start without -restart/resume
-archive without -restart

See more about -restart and -resume options in section ‘Working in stages’.

3.5 Working in stages

A Meraculous run consists of stages that can be executed and re-executed separately or as a set.
Each stage reloads the parameters from the main user-specified config file. It also loads parameters
from local parameter files created by preceding stages and writes local parameters for subsequent
stages to use.

Note: Users are free to change the parameters in the config file between restart/resume attempts,
however, the following parameters are considered "set in stone" and cannot be changed, removed,
or added after the onset on the run:

 mer_size
 is_diploid
 num_prefix_blocks
 local_num_procs
 cluster_slots_per_task

Upon successful completion a checkpoint file is created inside the checkpoints/ directory, which
signals to Meraculous.pl that the stage has been completed, and the next time the pipeline is
executed that stage will be skipped.

If for some reason the run exits in the middle of a stage, the user has an option to resume from
where the previous attempt left off (presumably after making necessary corrections). Various
milestones in the stage's progress are marked by "resume checkpoints" (not to be confused with
checkpoint files described above). Once the pipeline determines the stage it needs to execute, it will
jump to the specified resume checkpoint inside that stage, if one exists. Use the
-resume option to enable this behavior.

If, instead of resuming, you wish to rerun an entire stage from the beginning or rerun starting with a
certain stage, use the -restart option combined with -start [stage] and -stop [stage] to specify
which stage to start and end the run with. The –restart option will cause the deletion of all
previously completed stages from the '-start' stage and onward. If you wish to save those, use the -
archive option, and they will be moved to a newly created old/
subdirectory in your run.

If you wish to step through the stages, stopping after each one, use -step option

Note: The ability to resume the assembly process from a middle point is the main reason why
Meraculous writes a large amount of intermediate data to disk. Setting -cleanup_level to 0 will cause
many of these files to be deleted as soon as they're used and thus prohibits the
'restart' behavior while 'resume' should still be possible.

4. EVALUATING RESULTS & TOUBLESHOOTING

4.1 Key output files

 meraculous_final_results/SUMMARY.txt: Brief summary of assembly inputs and resuts
(for creating a more detailed report see Run evaluation script)

 meraculous_final_results/final.scaffolds.fa: The final set of scaffolds over 1 kb
in total length in Fasta format. Gaps between contigs are filled with stretches of Ns whose
number corresponds to the estimated gap size.

 meraculous_merblast/contigs.fa: The initial set of UUtigs (or bubbletigs if diploid)
that were used as input to the scaffolding stages. The total size of the contigs in this file should
be fairly close to the estimated genome size, with the remainder assumed to be in gaps that are
to be spanned and filled in later stages. The file is in Fasta format; run the included
fasta_stats program on this file to get a breakdown on contig size distribution.

Main genome contig total: 3190345

Main genome contig sequence total: 2691.5 MB (-> 0.0% gap)

Main genome contig N/L50: 284358/2.5 KB

 Minimum Number Number Total Total Scaffold

Scaffold of of Scaffold Contig Contig

 Length Scaffolds Contigs Length Length Coverage

-------- --------- ------- ----------- ----------- --------

 All 3,190,345 3,190,345 2,691,458,526 2,691,458,526 100.00%

 1 kb 713,602 713,602 2,037,767,767 2,037,767,767 100.00%

 2.5 kb 290,691 290,691 1,361,689,624 1,361,689,624 100.00%

 5 kb 89,217 89,217 661,837,734 661,837,734 100.00%

 10 kb 11,367 11,367 143,937,099 143,937,099 100.00%

 25 kb 47 47 1,298,589 1,298,589 100.00%

 50 kb 0 0 0 0 0.00%

 meraculous_mercount/mercount.png: Histogram of k-mer frequencies across the entire
dataset used for contig generation. This can be useful for identifying various anomalies and
trends with the dataset. Normally you should be able to identify the single peak corresponding
to unique genomic kmers (two peaks if diploid), a low-depth peak for a low-depth/erroneous
kmer population, and additional high-depth peaks for repeat k-mers.

Figure 1: mercount.png – k-mer abundance histogram

 meraculous_mercount/kha.png: This plot shows the cumulative fraction of all k-mers in
the dataset as a function of k-mer depth, which can be useful in identifying distinct k-mer
“populations”, e.g. repeats, polymorphic regions, contamination.

Figure 2: kha.png - Cumulative depth plot

 meraculous_ono/*.srf: Scaffold reference files from each scaffolding round. The
last digit in the file name specifies the scaffolding round; the first digit specifies the minimum

number of links cutoff used to form the scaffolds. These files allow mapping of the original
contigs to the current scaffolds.

4.2 Logs

The log files are critical for both monitoring the run progress and troubleshooing the results. You will
find youself looking at these files a lot, so it pays to get familiar with them early.

info.log - This is a concise record of the run, designed to inform a non-expert user of the
key events during the run and raise a basic "Errors encountered" flag in case of a run failure. During
a run, a good practice is watch this file in real time
(e.g. 'tail -f run_abc/log/info.log)

debug.log - This is the most complete and verbose record of the process, designed for
troubleshooting a failed run and is generally geared to a more expert user. In addition to the general
messages from info.log, it records all commands the pipeline executes as local system calls, parallel
job sets, resource usage and timing statistics. It will also capture all errors thrown by the Meraculous
pipeline with information on which component threw the error.

*.err files - Errors from standalone programs executed by the pipeline will normally be
captured in that program's standard error file. These files are always named and placed according to
the program’s intended output file and are specified as part of the command record in the debug.log
file. For example, if Meraculous starts a oNo4.pl process which is meant to output a file p3.2.srf,
then the standard error will be captured in the file p3.2.srf.err in the same directory. See more on
this in section ‘Troubleshooting tips’.

4.3 Run evaluation script

The bash script evaluate_meraculous_run.sh collects various stats from the current run
including any restart/resume attempts, and could be very useful in troubleshooting and
understanding what happened at the different assembly stages (see below). We encourage users to
run this script after the entire run is finished. It does not get executed automatically.

4.4 Troubleshooting tips

Errors and abnormal termination

When a run aborts prematurely, the error that caused the exit appears at the end of the debug.log
and error.log files, e.g.

2014/03/18 13:31:12 meraculous.pl main::run_meraculous_gap_closure 2705> No fastq files

found for library ECO

2014/03/18 13:31:12 meraculous.pl main:: 711> Stage meraculous_gap_closure failed (0.001786

seconds)

2014/03/18 13:31:12 meraculous.pl main:: 771> ERRORS ENCOUNTERED!

2014/03/18 13:31:12 meraculous.pl main:: 775> Total run time: 0.832589 seconds.

Often, in order not to overload the logs with repetitive error messages, the core executables write
errors and other troubleshooting info to stderr which gets captured by the pipeline into
corresponding .err files inside the stage directories. If debug.log doesn't provide enough
information about the root cause of the early exit, look for the last command that was attempted
and see where the stderr was redirected to. Then review the messages in that file. For example,
debug.log may have the following entry:

2014/03/26 12:08:49 M_Job_Set.pm M_Job_Set::run_job_set_local 765> Local command returned a

non-zero exit status! Check stderr outputs for more clues!

 Return value (65280) Command (perl gapPlacer.pl -b

../meraculous_merblast/blastMap.ECO.f0.merged -m 19 -i 215:10 -s

../meraculous_ono/ROUND_1/p7.1.srf

 -f ../meraculous_merblast/ECO.fastq.info.0 -c ../meraculous_merblast/contigs.fa -F 10 >

gapData.ECO.0 2> gapData.ECO.0.err)

The file gapData.ECO.0.err will contain more info on what went wrong:

$ tail gapData.ECO.0.err

 .

 .

 .

 Total reads placed in gaps = 487780 (aligned) + 1090614 (projected)

 Reading sequence file ../meraculous_import/ECO.fastq.0_00001...

 Couldn't open ../meraculous_import/ECO.fastq.0_00001

When running in the cluster mode, the actual submission commands and any submission-related
errors returned are captured in the files linkedScript.template.submit.<date>.err inside
the stage directories. These can be useful in troubleshooting cluster compatibility issues. As the
submission commands are formed by the cluster_submit.sh wrapper - that is typically the script
to edit if one needs to modify the syntax of the submission (this is different from the job monitoring
commands which are issued and logged directly by the pipeline)

$ cat linkedScript.template.submit.20140630-122647.err

 qsub -v MERACULOUS_ROOT -cwd -r n -b n -S /bin/bash -w e -j y -N gapClosure -o run_2014-

06-27_15h58m30s/meraculous_gap_closure/JOB_SET_LOG.gapClosure

 -P plant-assembly.p -l h_rt=00:30:00 -l ram.c=1G -l h_vmem=1G -t 1-1 run_2014-06-

27_15h58m30s/meraculous_gap_closure/linkedScript.template

Problems with assembly results

The prime causes of poor assemblies are usually sequencing library quality and/or settings, depth of
coverage, and sequencing artifacts (e.g. untrimmed adapter). The output of
evaluate_meraculous_run.sh can give clues about the input data. The secion MERCOUNTS of
the report, for instance, gives two different depth of coverage based on the k-mer count.
If either of the estimates is too low or too high it may be a sign of a sub-optimal depth distribution in
the dataset.

 Total mers counted: 12787940

 Average 19-mer depth (based on total count and genome size estimate): 55.22065

 Weighted average 19-mer depth (based on observed frequencies) : 55.0550390445998

You should also refer to mercount.png and kha.png files for the actual distribution plots.

If the coverage is sufficient, check how well each library did during scaffolding. The section LIBRARY
MAPPING ANALYSIS can point to a library whose data is getting rejected for a specific reason.

 library total_mapped hits_omitted(rate) total_spans

 ECO1 6383564 6035869(.915) 74585

 ECO2 20522013 734836(.035) 317968

 Read mappings omitted for following reasons:

 library truncated_align singleton minlen

 ECO1 4036475 499394 0

 ECO2 510942 223894 0

6. CITING AND FEEDBACK

If you use Meraculous in your research, please cite Chapman et al., 2014
We would also like to reference back to your publications on our site. Please email the reference,
the name of your lab, department and institution to egoltsman@lbl.gov.

We welcome your comments and bug reports. Please send them along with the debug.log file to
egoltsman@lbl.gov.

https://www.jgi-psf.org/
mailto:egoltsman@lbl.gov
mailto:egoltsman@lbl.gov

	Contents
	Before_you_begin
	Capabilities_and_limitations
	OS_requirements
	Hardware
	Job_execution
	Availability_and_help
	INSTALLATION
	SW_dependencies
	Install_procedure
	Test_run
	RUNNING
	Wf_stages
	Input_preparation
	Run_configuration
	Executing
	Working_in_stages
	EVALUATING
	Key_output_files
	Logs
	Run_eval_script
	Troubleshooting
	Citing_and_feedback

