Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Carboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation

Carboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation

Published in:

Biochim Biophys Acta 1804(2) , 382-92 (Feb 2010)

Author(s):

Cannon, G. C., Heinhorst, S., Kerfeld, C. A.

DOI:

10.1016/j.bbapap.2009.09.026

Abstract:

Cyanobacteria and some chemoautotrophic bacteria are able to grow in environments with limiting CO(2) concentrations by employing a CO(2)-concentrating mechanism (CCM) that allows them to accumulate inorganic carbon in their cytoplasm to concentrations several orders of magnitude higher than that on the outside. The final step of this process takes place in polyhedral protein microcompartments known as carboxysomes, which contain the majority of the CO(2)-fixing enzyme, RubisCO. The efficiency of CO(2) fixation by the sequestered RubisCO is enhanced by co-localization with a specialized carbonic anhydrase that catalyzes dehydration of the cytoplasmic bicarbonate and ensures saturation of RubisCO with its substrate, CO(2). There are two genetically distinct carboxysome types that differ in their protein composition and in the carbonic anhydrase(s) they employ. Here we review the existing information concerning the genomics, structure and enzymology of these uniquely adapted carbonic anhydrases, which are of fundamental importance in the global carbon cycle.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California