Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Clades of huge phages from across Earth’s ecosystems

Clades of huge phages from across Earth’s ecosystems

Published in:

Nature 578(7795) , 425-431 (Feb 2020)

Author(s):

Al-Shayeb, B., Sachdeva, R., Chen, L. X., Ward, F., Munk, P., Devoto, A., Castelle, C. J., Olm, M. R., Bouma-Gregson, K., Amano, Y., He, C., Meheust, R., Brooks, B., Thomas, A., Lavy, A., Matheus-Carnevali, P., Sun, C., Goltsman, D. S. A., Borton, M. A., Sharrar, A., Jaffe, A. L., Nelson, T. C., Kantor, R., Keren, R., Lane, K. R., Farag, I. F., Lei, S., Finstad, K., Amundson, R., Anantharaman, K., Zhou, J., Probst, A. J., Power, M. E., Tringe, S. G., Li, W. J., Wrighton, K., Harrison, S., Morowitz, M., Relman, D. A., Doudna, J. A., Lehours, A. C., Warren, L., Cate, J. H. D., Santini, J. M., Banfield, J. F.

DOI:

10.1038/s41586-020-2007-4

Abstract:

Bacteriophages typically have small genomes(1) and depend on their bacterial hosts for replication(2). Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth’s ecosystems.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California