Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Comparative Genomics of the Dormancy Regulons in Mycobacteria

Comparative Genomics of the Dormancy Regulons in Mycobacteria

Published in:

Journal of Bacteriology 193(14) , 3446-3452 (Jul 2011)

Author(s):

Gerasimova, A., Kazakov, A. E., Arkin, A. P., Dubchak, I., Gelfand, M. S.

DOI:

Doi 10.1128/Jb.00179-11

Abstract:

In response to stresses, Mycobacterium cells become dormant. This process is regulated by the DosR transcription factor. In Mycobacterium tuberculosis, the dormancy regulon is well characterized and contains the dosR gene itself and dosS and dosT genes encoding DosR kinases, nitroreductases (acg; Rv3131), diacylglycerol acyltransferase (DGAT) (Rv3130c), and many universal stress proteins (USPs). In this study, we apply comparative genomic analysis to characterize the DosR regulons in nine Mycobacterium genomes, Rhodococcus sp. RHA1, Nocardia farcinica, and Saccharopolyspora erythraea. The regulons are highly labile, containing eight core gene groups (regulators, kinases, USPs, DGATs, nitroreductases, ferredoxins, heat shock proteins, and the orthologs of the predicted kinase [Rv2004c] from M. tuberculosis) and 10 additional genes with more restricted taxonomic distribution that are mostly involved in anaerobic respiration. The largest regulon is observed in M. marinum and the smallest in M. abscessus. Analysis of large gene families encoding USPs, nitroreductases, and DGATs demonstrates a mosaic distribution of regulated and nonregulated members, suggesting frequent acquisition and loss of DosR-binding sites.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California