Archive

  • Visit JGI.DOE.GOV
News & Publications
Home › Publications › Thermal adaptation of soil microbial growth traits in response to chronic warming

Thermal adaptation of soil microbial growth traits in response to chronic warming

Published in:

Applied and Environmental Microbiology 89(11) , e00825-23 ( 2023)

Author(s):

Eng, Ashley Y., Narayanan, Achala, Alster, Charlotte J., DeAngelis, Kristen M.

DOI:

10.1128/aem.00825-23

Abstract:

IMPORTANCE: Soils are the largest terrestrial carbon sink and the foundation of our food, fiber, and fuel systems. Healthy soils are carbon sinks, storing more carbon than they release. This reduces the amount of carbon dioxide released into the atmosphere and buffers against climate change. Soil microbes drive biogeochemical cycling and contribute to soil health through organic matter breakdown, plant growth promotion, and nutrient distribution. In this study, we determined how soil microbial growth traits respond to long-term soil warming. We found that bacterial isolates from warmed plots showed evidence of adaptation of optimum growth temperature. This suggests that increased microbial biomass and growth in a warming world could result in greater carbon storage. As temperatures increase, greater microbial activity may help reduce the soil carbon feedback loop. Our results provide insight on how atmospheric carbon cycling and soil health may respond in a warming world.

View Publication

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California