Pilot study demonstrates single cell genomics approach for fungal genomic diversity. They can be found on forest floors, swamps and in houses, ranging in size from smaller than the period on your smartphone’s keyboard to stretching over several city blocks. More than a million species of fungi are estimated to live on this planet, but… [Read More]
Accepted 2019 JGI Community Science Program proposals requested terabases of sequence data. Over the summer, the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility, set an “institutional best” record by sequencing 20.4 trillion bases (Terabases or Tb) in a single month in Walnut Creek, Calif. Given the… [Read More]
Large scale study identifies core microbial community for maize rhizosphere. A plant’s health is affected not only by conditions such as water and temperature, but by the microorganisms that live around its roots. The rhizosphere microbiome, as this microbial community is known, regulates nutrient availability to the plant from the soil, and can impact plant… [Read More]
Latest JGI-Funded Technology Development Proposal Focuses on Cell-Free Systems Over the past two decades, the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, has transitioned from a high-throughput genome sequencing center to a national user facility that provides researchers around the world… [Read More]
Cultivation and sequencing effort targets economically and environmentally relevant microbes. The digestive tracts of ruminant (cud-chewing) animals such as cattle, sheep, and goats convert lignocellulosic plant matter to short-chain fatty acids used for nourishment with unparalleled efficiency, thanks to the activity of symbiotic microbes in the rumen. Rumen microbes play a vital role in allowing… [Read More]
Metabolic functions of microbial communities vary during a geyser eruption. Deep underground, the earth beneath our feet is teeming with microbial life, the majority of which has yet to be characterized. Cut off from sunlight, these enigmatic organisms must obtain life-sustaining energy and carbon, which all living cells need, through other means. A pressing question… [Read More]
Genus-wide Aspergillus project highlights new functional genome annotation methods. Found in microbial communities around the world, Aspergillus fungi are pathogens, decomposers, and important sources of biotechnologically-important enzymes. Each Aspergillus species is known to contain more than 250 carbohydrate active enzymes (CAzymes), which break down plant cell walls and are of interest to Department of Energy… [Read More]
Much of the research in the field of plant functional genomics to date has relied on approaches based on single reference genomes. But by itself, a single reference genome does not capture the full genetic variability of a species. A pan-genome, the non-redundant union of all the sets of genes found in individuals of a… [Read More]
Catalog of candidate genes involved in plant-microbe relationships. As the global population rises, estimated to hit nearly 10 billion by 2050, so does the need to boost crop yields and produce enough plant material for both food and sustainable alternative fuels. To help improve crop breeding strategies and overcome challenges such as making plants more… [Read More]
Comparative genomics involving humongous fungus helps explain evolution of Armillaria Among the contenders for the world’s largest living organism is something usually considered much smaller than a blue whale, or a towering sequoia. This particular organism is so big, one needs an aerial map to grasp its size, and even then it’s not completely visible… [Read More]