Archive

  • Visit JGI.DOE.GOV
All JGI Features
Home › Archives for FY 2014
Page 1 of 1912345...10...»Last »

October 29, 2014

High quality draft genome sequence of the slightly halophilic bacterium Halomonas zhanjiangensis type strain JSM 078169(T) (DSM 21076(T)) from a sea urchin in southern China

Halomonas zhanjiangensis Chen et al. 2009 is a member of the genus Halomonas, family Halomonadaceae, class Gammaproteobacteria. Representatives of the genus Halomonas are a group of halophilic bacteria often isolated from salty environments. The type strain H. zhanjiangensis JSM 078169(T) was isolated from a sea urchin (Hemicentrotus pulcherrimus) collected from the South China Sea. The… [Read More]

October 29, 2014

Genome sequence of Rhizobium leguminosarum bv trifolii strain WSM1689, the microsymbiont of the one flowered clover Trifolium uniflorum

Rhizobium leguminosarum bv. trifolii is a soil-inhabiting bacterium that has the capacity to be an effective N2-fixing microsymbiont of Trifolium (clover) species. R. leguminosarum bv. trifolii strain WSM1689 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Trifolium uniflorum collected on the edge of a valley 6 km from… [Read More]

October 29, 2014

Complete genome sequence of Anabaena variabilis ATCC 29413

Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as… [Read More]

October 29, 2014

Genome analyses of the carboxydotrophic sulfate-reducers Desulfotomaculum nigrificans and Desulfotomaculum carboxydivorans and reclassification of Desulfotomaculum caboxydivorans as a later synonym of Desulfotomaculum nigrificans

Desulfotomaculum nigrificans and D. carboxydivorans are moderately thermophilic members of the polyphyletic spore-forming genus Desulfotomaculum in the family Peptococcaceae. They are phylogenetically very closely related and belong to ‘subgroup a’ of the Desulfotomaculum cluster 1. D. nigrificans and D. carboxydivorans have a similar growth substrate spectrum; they can grow with glucose and fructose as electron… [Read More]

October 29, 2014

Genome sequence of the acid-tolerant Burkholderia sp. strain WSM2230 from Karijini National Park, Australia

Burkholderia sp. strain WSM2230 is an aerobic, motile, Gram-negative, non-spore-forming acid-tolerant rod isolated from acidic soil collected in 2001 from Karijini National Park, Western Australia, using Kennedia coccinea (Coral Vine) as a host. WSM2230 was initially effective in nitrogen-fixation with K. coccinea, but subsequently lost symbiotic competence. Here we describe the features of Burkholderia sp…. [Read More]

October 29, 2014

Genome sequence of the acid-tolerant Burkholderia sp. strain WSM2232 from Karijini National Park, Australia

Burkholderia sp. strain WSM2232 is an aerobic, motile, Gram-negative, non-spore-forming acid-tolerant rod that was trapped in 2001 from acidic soil collected from Karijini National Park (Australia) using Gastrolobium capitatum as a host. WSM2232 was effective in nitrogen fixation with G. capitatum but subsequently lost symbiotic competence during long-term storage. Here we describe the features of… [Read More]

October 29, 2014

Sphagnum physiology in the context of changing climate: Emergent influences of genomics, modeling and host-microbiome interactions on understanding ecosystem function

Peatlands harbor more than one-third of terrestrial carbon leading to the argument that the bryophytes, as major components of peatland ecosystems, store more organic carbon in soils than any other collective plant taxa. Plants of the genus Sphagnum is an important component of peatland ecosystems and are potentially vulnerable to changing climatic conditions. However, the… [Read More]

October 29, 2014

Genome sequence of Burkholderia mimosarum strain LMG 23256(T), a Mimosa pigra microsymbiont from Anso, Taiwan

Burkholderia mimosarum strain LMG 23256(T) is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Mimosa pigra (giant sensitive plant). LMG 23256(T) was isolated from a nodule recovered from the roots of the M. pigra growing in Anso, Taiwan. LMG 23256(T) is highly effective at… [Read More]

October 29, 2014

Comparative Genomics of Saccharomyces cerevisiae Natural Isolates for Bioenergy Production

Lignocellulosic plant material is a viable source of biomass to produce alternative energy including ethanol and other biofuels. However, several factors-including toxic byproducts from biomass pretreatment and poor fermentation of xylose and other pentose sugars-currently limit the efficiency of microbial biofuel production. To begin to understand the genetic basis of desirable traits, we characterized three… [Read More]

October 29, 2014

MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm

BACKGROUND: Recovering individual genomes from metagenomic datasets allows access to uncultivated microbial populations that may have important roles in natural and engineered ecosystems. Understanding the roles of these uncultivated populations has broad application in ecology, evolution, biotechnology and medicine. Accurate binning of assembled metagenomic sequences is an essential step in recovering the genomes and understanding… [Read More]
Page 1 of 1912345...10...»Last »

More from the JGI archives:

  • Software Tools
  • Science Highlights
  • News Releases
  • Blog
  • User Proposals
  • 2018-24 Strategic Plan
  • Progress Reports
  • Historical Primers
  • Legacy Projects
  • Past Events
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California