Archive

  • Visit JGI.DOE.GOV
All JGI Features
Home › Archives for FY 2014
Page 11 of 19« First«...910111213...»Last »

July 24, 2014

Genome sequence of the clover-nodulating Rhizobium leguminosarum bv. trifolii strain SRDI943

Rhizobium leguminosarum bv. trifolii SRDI943 (strain syn. V2-2) is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Trifolium michelianum Savi cv. Paradana that had been grown in soil collected from a mixed pasture in Victoria, Australia. This isolate was found to have a broad clover host range but was… [Read More]

July 24, 2014

Genome sequence of the clover-nodulating Rhizobium leguminosarum bv. trifolii strain SRDI565

Rhizobium leguminosarum bv. trifolii SRDI565 (syn. N8-J) is an aerobic, motile, Gram-negative, non-spore-forming rod. SRDI565 was isolated from a nodule recovered from the roots of the annual clover Trifolium subterraneum subsp. subterraneum grown in the greenhouse and inoculated with soil collected from New South Wales, Australia. SRDI565 has a broad host range for nodulation within… [Read More]

July 24, 2014

Genome sequence of the Trifolium rueppellianum -nodulating Rhizobium leguminosarum bv. trifolii strain WSM2012

Rhizobium leguminosarum bv. trifolii WSM2012 (syn. MAR1468) is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an ineffective root nodule recovered from the roots of the annual clover Trifolium rueppellianum Fresen growing in Ethiopia. WSM2012 has a narrow, specialized host range for N2-fixation. Here we describe the features of R. leguminosarum bv. trifolii… [Read More]

July 24, 2014

Complete genome sequence of Mesorhizobium opportunistum type strain WSM2075(T.)

Mesorhizobium opportunistum strain WSM2075(T) was isolated in Western Australia in 2000 from root nodules of the pasture legume Biserrula pelecinus that had been inoculated with M. ciceri bv. biserrulae WSM1271. WSM2075(T) is an aerobic, motile, Gram negative, non-spore-forming rod that has gained the ability to nodulate B. pelecinus but is completely ineffective in N2 fixation… [Read More]

July 24, 2014

Transposable Element Dynamics among Asymbiotic and Ectomycorrhizal Amanita Fungi

Transposable elements (TEs) are ubiquitous inhabitants of eukaryotic genomes and their proliferation and dispersal shape genome architectures and diversity. Nevertheless, TE dynamics are often explored for one species at a time and are rarely considered in ecological contexts. Recent work with plant pathogens suggests a link between symbiosis and TE abundance. The genomes of pathogenic… [Read More]

July 24, 2014

Stop codon reassignments in the wild

The canonical genetic code is assumed to be deeply conserved across all domains of life with very few exceptions. By scanning 5.6 trillion base pairs of metagenomic data for stop codon reassignment events, we detected recoding in a substantial fraction of the >1700 environmental samples examined. We observed extensive opal and amber stop codon reassignments… [Read More]

July 24, 2014

The microbial ecology of permafrost

Permafrost constitutes a major portion of the terrestrial cryosphere of the Earth and is a unique ecological niche for cold-adapted microorganisms. There is a relatively high microbial diversity in permafrost, although there is some variation in community composition across different permafrost features and between sites. Some microorganisms are even active at subzero temperatures in permafrost…. [Read More]

July 24, 2014

Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus

Extensive genomic diversity within coexisting members of a microbial species has been revealed through selected cultured isolates and metagenomic assemblies. Yet, the cell-by-cell genomic composition of wild uncultured populations of co-occurring cells is largely unknown. In this work, we applied large-scale single-cell genomics to study populations of the globally abundant marine cyanobacterium Prochlorococcus. We show… [Read More]

July 24, 2014

Complete genome sequence of Enterobacter sp. IIT-BT 08: A potential microbial strain for high rate hydrogen production

Enterobacter sp. IIT-BT 08 belongs to Phylum: Proteobacteria, Class: Gammaproteobacteria, Order: Enterobacteriales, Family: Enterobacteriaceae. The organism was isolated from the leaves of a local plant near the Kharagpur railway station, Kharagpur, West Bengal, India. It has been extensively studied for fermentative hydrogen production because of its high hydrogen yield. For further enhancement of hydrogen production… [Read More]

July 24, 2014

Genomic adaptations of the halophilic Dead Sea filamentous fungus Eurotium rubrum

The Dead Sea is one of the most hypersaline habitats on Earth. The fungus Eurotium rubrum (Eurotiomycetes) is among the few species able to survive there. Here we highlight its adaptive strategies, based on genome analysis and transcriptome profiling. The 26.2 Mb genome of E. rubrum shows, for example, gains in gene families related to… [Read More]
Page 11 of 19« First«...910111213...»Last »

More from the JGI archives:

  • Software Tools
  • Science Highlights
  • News Releases
  • Blog
  • User Proposals
  • 2018-24 Strategic Plan
  • Progress Reports
  • Historical Primers
  • Legacy Projects
  • Past Events
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California