Archive

  • Visit JGI.DOE.GOV
All JGI Features
Home › Archives for FY22
Page 13 of 26« First«...1112131415...20...»Last »

December 22, 2023

Rapid changes in coastal ocean microbiomes uncoupled with shifts in environmental variables

Disturbances, here defined as events that directly alter microbial community composition, are commonly studied in host-associated and engineered systems. In spite of global change both altering environmental averages and increasing extreme events, there has been relatively little research into the causes, persistence and population-level impacts of disturbance in the dynamic coastal ocean. Here, we utilize… [Read More]

December 22, 2023

Evaluation of inducible promoter–riboswitch constructs for heterologous protein expression in the cyanobacterial species Anabaena sp. PCC 7120

Cyanobacteria are promising chassis for synthetic biology applications due to the fact that they are photosynthetic organisms capable of growing in simple, inexpensive media. Given their slower growth rate than other model organisms such as Escherichia coli and Saccharomyces cerevisiae, there are fewer synthetic biology tools and promoters available for use in model cyanobacteria. Here,… [Read More]

December 22, 2023

Methane-derived carbon flows into host–virus networks at different trophic levels in soil

The concentration of atmospheric methane (CH4) continues to increase with microbial communities controlling soil-atmosphere fluxes. While there is substantial knowledge of the diversity and function of prokaryotes regulating CH4 production and consumption, their active interactions with viruses in soil have not been identified. Metagenomic sequencing of soil microbial communities enables identification of linkages between viruses… [Read More]

December 22, 2023

The F-box protein gene exo-1 is a target for reverse engineering enzyme hypersecretion in filamentous fungi

Carbohydrate active enzymes (CAZymes) are vital for the lignocellulose-based biorefinery. The development of hypersecreting fungal protein production hosts is therefore a major aim for both academia and industry. However, despite advances in our understanding of their regulation, the number of promising candidate genes for targeted strain engineering remains limited. Here, we resequenced the genome of… [Read More]

December 22, 2023

Soils and sediments host Thermoplasmata archaea encoding novel copper membrane monooxygenases (CuMMOs)

Copper membrane monooxygenases (CuMMOs) play critical roles in the global carbon and nitrogen cycles. Organisms harboring these enzymes perform the first, and rate limiting, step in aerobic oxidation of ammonia, methane, or other simple hydrocarbons. Within archaea, only organisms in the order Nitrososphaerales (Thaumarchaeota) encode CuMMOs, which function exclusively as ammonia monooxygenases. From grassland and… [Read More]

December 22, 2023

Examining the Relationship Between the Testate Amoeba Hyalosphenia papilio (Arcellinida, Amoebozoa) and its Associated Intracellular Microalgae Using Molecular and Microscopic Methods

Symbiotic relationships between heterotrophic and phototrophic partners are common in microbial eukaryotes. Among Arcellinida (Amoebozoa) several species are associated with microalgae of the genus Chlorella (Archaeplastida). So far, these symbioses were assumed to be stable and mutualistic, yet details of the interactions are limited. Here, we analyzed 22 single-cell transcriptomes and 36 partially-sequenced genomes of… [Read More]

December 22, 2023

Enzyme engineering and in vivo testing of a formate reduction pathway

Formate is an attractive feedstock for sustainable microbial production of fuels and chemicals, but its potential is limited by the lack of efficient assimilation pathways. The reduction of formate to formaldehyde would allow efficient downstream assimilation, but no efficient enzymes are known for this transformation. To develop a 2-step formate reduction pathway, we screened natural… [Read More]

December 22, 2023

The recent evolutionary rescue of a staple crop depended on over half a century of global germplasm exchange

Rapid environmental change can lead to population extinction or evolutionary rescue. The global staple crop sorghum (Sorghum bicolor) has recently been threatened by a global outbreak of an aggressive new biotype of sugarcane aphid (SCA; Melanaphis sacchari). We characterized genomic signatures of adaptation in a Haitian breeding population that had rapidly adapted to SCA infestation,… [Read More]

December 22, 2023

Protocol for single-cell isolation and genome amplification of environmental microbial eukaryotes for genomic analysis

We describe environmental microbial eukaryotes (EMEs) sample collection, single-cell isolation, lysis, and genome amplification, followed by the rDNA amplification and OTU screening for recovery of high-quality species-specific genomes for de novo assembly. These protocols are part of our pipeline that also includes bioinformatic methods. The pipeline and its application on a wide range of phyla… [Read More]

December 22, 2023

The ectomycorrhizal fungus Pisolithus microcarpus encodes a microRNA involved in cross-kingdom gene silencing during symbiosis

Small RNAs (sRNAs) are known to regulate pathogenic plant-microbe interactions. Emerging evidence from the study of these model systems suggests that microRNAs (miRNAs) can be translocated between microbes and plants to facilitate symbiosis. The roles of sRNAs in mutualistic mycorrhizal fungal interactions, however, are largely unknown. In this study, we characterized miRNAs encoded by the… [Read More]
Page 13 of 26« First«...1112131415...20...»Last »

More from the JGI archives:

  • Software Tools
  • Science Highlights
  • News Releases
  • Blog
  • User Proposals
  • 2018-24 Strategic Plan
  • Progress Reports
  • Historical Primers
  • Legacy Projects
  • Past Events
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California