Archive

  • Visit JGI.DOE.GOV
All JGI Features
Home › Items tagged with: bacteria

Content Tagged "bacteria"

Page 1 of 912345...»Last »

November 8, 2013

New tool helps find gene markers in microorganisms

Researchers have devised a novel method to exploit relationships between bacteria and archaea for a new set of gene markers The Science The researchers developed a new way to identify gene markers in bacteria and the primitive microorganisms classified in the kingdom known as Archaea. Dubbed, PhyEco (for phylogenetic and phylogenetic ecology) this strategy can… [Read More]

November 1, 2013

Lost in symbiosis: genes dropped in piggy-backing bacterial strain

A genome comparison of two strains of a bacterium reveals gene loss as a result of a symbiotic relationship with a protist host. The Science The researchers sequenced the complete genome for a symbiotic strain of the bacterium, Polynucleobacter necessarius. They then compared the symbiont’s genome with the free-living strain in order to understand how… [Read More]

October 25, 2013

Root-dwelling denizen of Sheoak trees characterized

The complete genome of a novel nitrogen-fixing bacterium has been recently sequenced and analyzed. The Science The researchers isolated and sequenced the complete genome of a species of Micromonospora, bacteria that play a role in promoting plant growth and breaking down plant cell walls, from root nodules of Sheoak trees (Casuarina equisetifolia). The Impact Although… [Read More]

August 30, 2013

Subsurface Sediment Yields Novel Organism

Metagenomic analysis emphasizes the “extraordinary microbial novelty” of poorly-explored subsurface ecosystems The Science Through metagenomics, researchers reconstructed a dominant organism and member of a new phylum-level lineage from an aquifer sediment in Colorado. The Impact Analysis of the complete microbial genome led to a detailed metabolic model with evidence for multiple new enzymes and pathways…. [Read More]

July 26, 2013

The Importance and Function of Nitrogen-Fixing Microbes

All organisms on Earth require nitrogen to survive, but most cannot use nitrogen unless it is combined with other elements. These compounds are formed by the process known as nitrogen fixation, which can only be carried out in nature with the help of microorganisms. In agriculture, fertilizers are often deployed to supplement nitrogen levels in… [Read More]

May 3, 2013

Marine metagenome offers clues to ocean nitrogen cycle

Nitrification is the process by which ammonia is converted first into nitrites and then into nitrates, a form of nitrogen that can then be used by plants to grow. However, understanding how the nitrogen cycle works in marine environments is equally crucial. Until 1977, scientists believed that ammonium could only be oxidized by aerobic bacteria…. [Read More]

June 21, 2012

Waves of Berkeley Lab Responders Deploy Omics to Track Deepwater Horizon Oil Spill Cleanup Microbes

In the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico two years ago, various strategies were deployed to prevent 4.9 million barrels of light crude oil from fouling the waters and reaching the shores. A team of Lawrence Berkeley National Laboratory (Berkeley Lab) researchers found that nature also played a role… [Read More]

June 1, 2012

Comparative genomics method to tag novel nitrogen-fixation genes

Nitrogen is crucial for plant growth but plants cannot harness it directly from the atmosphere. In the United States, legume crops such as soybeans and peas rely on nitrogen fertilizers to boost yields; in 2007, 13 million tons of industrially-produced fertilizers were applied. Soil bacteria such as Sinorhizobiummeliloti have a symbiotic relationship with plant hosts… [Read More]

March 2, 2012

Elucidating bacteria’s roles in ant fungal gardens

Leafcutter ants cultivate fungal gardens that serve as their primary food source. Working toward the goal of harnessing novel enzymes for breaking down plant biomass to produce cellulosic biofuels, Great Lakes Bioenergy Research Center (GLBRC) researchers have been studying the process by which the fungi break down the plant leaves harvested by the ants and… [Read More]

February 24, 2012

Analyzing enzymes for a PAH degradation pathway

Microbial activity is crucial for breaking down compounds, removing pollutants and chemically transforming organic compounds. Some of these pollutants are polycyclic aromatic hydrocarbons (PAHs) found in contaminated soils. The PAH phenanthrene, for example, can be broken down by the bacterium Arthobacterphenanthrenivorans, which was isolated from a creosote-polluted site in Greece, and used by the microbe… [Read More]
Page 1 of 912345...»Last »

More from the JGI archives:

  • Software Tools
  • Science Highlights
  • News Releases
  • Blog
  • User Proposals
  • 2018-24 Strategic Plan
  • Progress Reports
  • Historical Primers
  • Legacy Projects
  • Past Events
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California