Archive

  • Visit JGI.DOE.GOV
All JGI Features
Home › Archives for FY20
Page 10 of 11« First«...7891011»

September 10, 2020

Development of a thermophilic coculture for corn fiber conversion to ethanol

The fiber in corn kernels, currently unutilized in the corn to ethanol process, represents an opportunity for introduction of cellulose conversion technology. We report here that Clostridium thermocellum can solubilize over 90% of the carbohydrate in autoclaved corn fiber, including its hemicellulose component glucuronoarabinoxylan (GAX). However, Thermoanaerobacterium thermosaccharolyticum or several other described hemicellulose-fermenting thermophilic bacteria… [Read More]

September 10, 2020

Yaravirus: A novel 80-nm virus infecting Acanthamoeba castellanii

Here we report the discovery of Yaravirus, a lineage of amoebal virus with a puzzling origin and evolution. Yaravirus presents 80-nm-sized particles and a 44,924-bp dsDNA genome encoding for 74 predicted proteins. Yaravirus genome annotation showed that none of its genes matched with sequences of known organisms at the nucleotide level; at the amino acid… [Read More]

September 10, 2020

Polysaccharide niche partitioning of distinct Polaribacter clades during North Sea spring algal blooms

Massive releases of organic substrates during marine algal blooms trigger growth of many clades of heterotrophic bacteria. Algal polysaccharides represent the most diverse and structurally complex class of these substrates, yet their role in shaping the microbial community composition is poorly understood. We investigated, whether polysaccharide utilization capabilities contribute to niche differentiation of Polaribacter spp…. [Read More]

September 10, 2020

Natural Variation in Lignin and Pectin Biosynthesis-Related Genes in Switchgrass (Panicum virgatum L.) and Association of SNP Variants with Dry Matter Traits

Switchgrass (Panicum virgatum), a C4 perennial grass native to North America and developed as a sustainable biofuel feedstock, occurs in two ecotypes, lowland and upland, which vary in their architecture as well as their range of adaptation. In this study, we assessed single nucleotide polymorphism (SNP) variation in 372 switchgrass genotypes for nine genes involved… [Read More]

September 10, 2020

Synthetic biology open language (SBOL) version 3.0.0

Synthetic biology builds upon genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. When designing a synthetic system, synthetic biologists need to exchange information about multiple types of molecules, the intended behavior of the system, and actual experimental measurements. The Synthetic Biology Open Language (SBOL) has been developed… [Read More]

September 10, 2020

Enhancing Terminal Deoxynucleotidyl Transferase Activity on Substrates with 3′ Terminal Structures for Enzymatic De Novo DNA Synthesis

Enzymatic oligonucleotide synthesis methods based on the template-independent polymerase terminal deoxynucleotidyl transferase (TdT) promise to enable the de novo synthesis of long oligonucleotides under mild, aqueous conditions. Intermediates with a 3′ terminal structure (hairpins) will inevitably arise during synthesis, but TdT has poor activity on these structured substrates, limiting its usefulness for oligonucleotide synthesis. Here,… [Read More]

September 10, 2020

Constructing a yeast to express the largest cellulosome complex on the cell surface

Cellulosomes, which are multienzyme complexes from anaerobic bacteria, are considered nature’s finest cellulolytic machinery. Thus, constructing a cellulosome in an industrial yeast has long been a goal pursued by scientists. However, it remains highly challenging due to the size and complexity of cellulosomal genes. Here, we overcame the difficulties by synthesizing the Clostridium thermocellum scaffoldin… [Read More]

September 10, 2020

Draft genome of five Cupriavidus plantarum strains: agave, maize and sorghum plant-associated bacteria with resistance to metals

Five strains of Cupriavidus plantarum, a metal-resistant, plant-associated bacterium, were selected for genome sequencing through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) Phase IV project at the Joint Genome Institute (JGI) of the U.S. Department of Energy (DOE). The genome of the strains was in the size range of 6.2-6.4 Mbp and encoded 5605-5834… [Read More]

September 10, 2020

Clades of huge phages from across Earth’s ecosystems

Bacteriophages typically have small genomes(1) and depend on their bacterial hosts for replication(2). Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were… [Read More]

September 10, 2020

Complementary Metagenomic Approaches Improve Reconstruction of Microbial Diversity in a Forest Soil

Soil ecosystems harbor diverse microorganisms and yet remain only partially characterized as neither single-cell sequencing nor whole-community sequencing offers a complete picture of these complex communities. Thus, the genetic and metabolic potential of this “uncultivated majority” remains underexplored. To address these challenges, we applied a pooled-cell-sorting-based mini-metagenomics approach and compared the results to bulk metagenomics…. [Read More]
Page 10 of 11« First«...7891011»

More from the JGI archives:

  • Software Tools
  • Science Highlights
  • News Releases
  • Blog
  • User Proposals
  • 2018-24 Strategic Plan
  • Progress Reports
  • Historical Primers
  • Legacy Projects
  • Past Events
  • JGI.DOE.GOV
  • Disclaimer
  • Accessibility / Section 508
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2025 The Regents of the University of California